Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37297134

ABSTRACT

Ammonia (NH3) is a highly important industrial chemical used as fuel and fertilizer. The industrial synthesis of NH3 relies heavily on the Haber-Bosch route, which accounts for roughly 1.2% of global annual CO2 emissions. As an alternative route, the electrosynthesis of NH3 from nitrate anion (NO3-) reduction (NO3-RR) has drawn increasing attention, since NO3-RR from wastewater to produce NH3 can not only recycle waste into treasure but also alleviate the adverse effects of excessive NO3- contamination in the environment. This review presents contemporary views on the state of the art in electrocatalytic NO3- reduction over Cu-based nanostructured materials, discusses the merits of electrocatalytic performance, and summarizes current advances in the exploration of this technology using different strategies for nanostructured-material modification. The electrocatalytic mechanism of nitrate reduction is also reviewed here, especially with regard to copper-based catalysts.

2.
J Hazard Mater ; 454: 131448, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37094442

ABSTRACT

The activation of peracetic acid (PAA) by using Fe2+ has been used to degrade emerging micropollutants in water, the slow cycle of Fe3+/Fe2+ however limits the process efficiency, and debates on the dominant reactive species are still ongoing. This study investigated Fe2+-catalyzed PAA under ultraviolet-A (UVA) irradiation toward the degradation of five representative micropollutants (carbamazepine, diclofenac, naproxen, sulfamethoxazole and trimethoprim). The results showed that PAA was efficiently catalyzed by trace Fe2+ (≤ 10 µM) with the synergy of UVA, resulting in more efficient naproxen degradation than that by inorganic peroxides (H2O2/persulfates)-based photo-Fenton processes. Notably, high-valent iron (IV)-oxo complex (FeIVO2+) was identified as the primary reactive species in Fe2+/PAA/UVA process, whereas the generation of organic radicals and hydroxyl radical were quite minimal. As such, remarkable selectivity toward the degradation of multiple micropollutants were observed, which resulted in much faster degradation rates of naproxen and diclofenac than those of carbamazepine, sulfamethoxazole and trimethoprim. Moreover, the critical operating parameters were optimized based on the degradation kinetics of naproxen, and the application potential has been revealed by the efficient naproxen degradation in actual water samples. The findings highlight that the introduction of UVA in the Fe2+/PAA system not only solves the problem of the slow rate of Fe2+ regeneration, but also greatly decreases the iron sludge production by using trace Fe2+, making it attractive for practical application.

3.
Sci Total Environ ; 784: 147204, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33905940

ABSTRACT

This study investigated the advanced treatment of secondary effluent organic matters (EfOM) from an industrial park wastewater treatment plant (IPWTP) by Fenton oxidation process and its combination with biological aerated filter (BAF). The constituents of EfOM were characterized by using fluorescence excitation-emission matrix, and the results showed that the major components included aromatic proteins, soluble microbial products, humic and fulvic acid-like substances, and compounds associated with fluorescent region of Ex 250-300 nm/Em 600-700 nm. The EfOM was strongly resistant to biodegradation (biochemical oxygen demand (BOD5):chemical oxygen demand (COD) ratio at 0.11), resulting in less than 15% dissolved organic carbon (DOC) removal efficiency by the BAF reactor. The advanced treatment of EfOM by Fenton oxidation process led to maximum ~50% mineralization efficiency of EfOM under the optimal conditions of 2.0 mM FeII, 10 mM H2O2, pH 3.0 and 3.0 h of the reaction time. Particularly, Fenton oxidation treatment effectively improved the biodegradability of EfOM in the IPWTP secondary effluents, e.g., increasing the BOD5:COD ratio from 0.11 to 0.42. A synergistic combination of Fenton oxidation process with the BAF reactor offered desirable mineralization efficiencies of EfOM (>70%) at lower dosages of Fenton's reagents. The present results suggest that Fenton oxidation process combining with the BAF reactor can be a promising strategy for the advanced treatment of EfOM in IPWTP secondary effluents. This study provides guidance for the characterization and advanced treatment of EfOM in IPWTP secondary effluents for practical purpose.


Subject(s)
Water Pollutants, Chemical , Water Purification , Biological Oxygen Demand Analysis , Hydrogen Peroxide , Oxidation-Reduction , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
4.
J Colloid Interface Sci ; 581(Pt B): 964-978, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32956914

ABSTRACT

Supported copper oxides with well-dispersed metal species, small size, tunable valence and high stability are highly desirable in catalysis. Herein, novel copper oxide (CuOx) catalysts supported on defect-rich mesoporous alumina microspheres are developed using a spray-drying-assisted evaporation induced self-assembly method. The catalysts possess a special structure composed of a mesoporous outer layer, a mesoporous-nanosphere-stacked under layer and a hollow cavity. Because of this special structure and the defective nature of the alumina support, the CuOx catalysts are ultrasmall in size (1 ~ 3 nm), bivalent with a very high Cu+/Cu2+ ratio (0.7), and highly stable against sintering and oxidation at high temperatures (up to 800 °C), while the wet impregnation method results in CuOx catalysts with much larger sizes (~15 nm) and lower the Cu+/Cu2+ ratios (~0.29). The catalyst formation mechanism through the spray drying method is proposed and discussed. The catalysts show remarkable performance in catalytic ozonation of phenol wastewaters. With high-concentration phenol (250 ppm) as the model organic pollutant, the optimized catalyst delivers promising catalytic performance with 100% phenol removal and 53% TOC removal in 60 min, and a high cyclic stability. Superoxide anion free radicals (⋅O2-), singlet oxygen (1O2) and hydroxyl radicals (⋅OH) are the predominant reactive species. A detailed structure-performance study reveals the surface hydroxyl groups and Cu+/Cu2+ redox couples play cooperatively to accelerate O3 decomposition generating reactive radicals. The plausible catalytic O3 decomposition mechanism is proposed and discussed with supportive evidences.

5.
Environ Sci Technol ; 54(6): 3714-3724, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32069034

ABSTRACT

Bimetallic Fe-Mn oxide (BFMO) has been regarded as a promising activator of peroxysulfate (PS), the sustained activity and durability of BFMO for long-term activation of PS in situ, however, is unclear for groundwater remediation. A BFMO (i.e., Mn1.5FeO6.35) was prepared and explored for PS-based in situ chemical oxidation (ISCO) of trichloroethylene (TCE) in sand columns with simulated/actual groundwater (SGW/AGW). The sustained activity of BFMO, oxidant utilization efficiency, and postreaction characterization were particularly investigated. Electron spin resonance (ESR) and radical scavenging tests implied that sulfate radicals (SO4•-) and hydroxyl radicals (HO•) played major roles in degrading TCE, whereas singlet oxygen (1O2) contributed less to TCE degradation by BFMO-activated Oxone. Fast degradation and almost complete dechlorination of TCE in AGW were obtained, with reaction stoichiometry efficiencies (RSE) of ΔTCE/ΔOxone at 3-5%, much higher than those reported RSE values in H2O2-based ISCO (≤0.28%). HCO3- did not show detrimental effect on TCE degradation, and effects of natural organic matters (NOM) were negligible at high Oxone dosage. Postreaction characterizations displayed that the BFMO was remarkably stable with sustained activity for Oxone activation after 115 days of continuous-flow test, which therefore can be promising catalyst for Oxone-based ISCO for TCE-contaminated groundwater remediation.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Hydrogen Peroxide , Oxidation-Reduction , Oxides , Sulfuric Acids
6.
Sci Total Environ ; 688: 513-520, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31726571

ABSTRACT

Ferric-nitrilotriacetate complex (FeIII-NTA) has been adopted to catalyze the photo-Fenton degradation of emerging pharmaceutical micropollutants in water and wastewater at neutral pH. The generation of hydroxyl radicals (HO) in UVA/FeIII-NTA/H2O2 was identified by using electron spin resonance (ESR) trapping technique. The effects of critical parameters (e.g., NTA:FeIII molar ratio, FeIII-NTA and H2O2 dosages) on the steady-state HO concentrations were studied in terms of the degradation of carbamazepine (CBZ, as a model compound) in Milli-Q water. In addition, the degradation of pharmaceuticals mixtures (including CBZ, crotamiton (CRMT) and ibuprofen (IBP)) in wastewater effluents from a biological aerated filter (BAF) by UVA/FeIII-NTA/H2O2 was studied in continuous-flow mode. The results showed that the efficacies of FeIII-NTA in catalyzing photo-Fenton degradation of pharmaceuticals in wastewater effluents were comparable to those obtained by FeIII-ethylenediamine-N,N'-disuccinic acid (FeIII-EDDS), and far exceeded other FeIII-L complex (e.g., citric acid, malonic acid, oxalic acid and tartaric acid). More than 92% degradation efficiencies of CBZ, CRMT and IBP were obtained in continuous-flow mode under the given conditions of 0.178 mM FeIII-NTA (1:1), 4.54 mM H2O2, UVA intensity 4.05 mW cm-2, hydraulic retention time (HRT) 2 h, influent pH 7.6 (±0.2) and temperature 20 °C. The results presented herein suggest that FeIII-NTA-catalyzed neutral photo-Fenton reaction can be an alternative tertiary process for the treatment of pharmaceutical micropollutants in secondary wastewater effluents.

7.
J Colloid Interface Sci ; 551: 164-176, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31078098

ABSTRACT

In this paper, we demonstrate the facile and general synthesis of alkaline-earth metal manganites, denoted as A(Mg, Ca, Ba)MnxOy, for efficient degradation of high-concentration phenolic compounds via catalytic ozonation. The representative CaMnxOy oxides show a hierarchical spherical structure constructed by crystalline nanorods and numerous macropores. They possess mixed Mn4+/Mn3+ chemical valences and abundant surface hydroxyl (OH) groups. The ozone (O3) decomposition rate on the CaMnxOy catalysts is greatly accelerated and follows the first-order law. These catalysts are promising for the degradation of phenolic compounds via catalytic ozonation, exhibiting rapid pseudofirst-order degradation kinetics, a high total organic carbon (TOC) removal efficiency and an excellent stability. Under optimized conditions (a low O3 dosage of 1.5 mg/min and a catalyst dosage of 7.5 g/L), for the treatment of concentrated phenol (50-240 mg/L), the CaMnxOy catalysts show 100% degradation and 50-70% mineralization within 1.0 h. The Ca2+ ions are essential to create redox Mn4+/Mn3+ couples and to significantly reduce manganese leaching. High surface ratios of Mn4+/Mn3+ and OH/lattice oxygen (Olat) are beneficial for enhancing the catalytic performance. Superoxide anion free radicals (O2-) and singlet oxygen (1O2) are the predominant reactive species for the oxidation degradation. The O2- reaction pathway is proposed. Specifically, the surface OH sites activate O3, displaying highly enhanced decomposition rates. The generated O2- and 1O2 play a role in oxidation. The redox Mn4+/Mn3+ and the Olat/oxygen vacancy (Olat/Ovac) couples play important roles in electron transfer. The proposed mechanism is supported by active site probing, radical scavenging, spectroscopic studies, and the results in the degradation of substituted phenols.

8.
Environ Sci Pollut Res Int ; 25(15): 14585-14594, 2018 May.
Article in English | MEDLINE | ID: mdl-29532371

ABSTRACT

Competitive adsorption of As(V) and Sb(V) at environmentally relevant concentrations onto ferrihydrite was investigated. Batch experiments and XPS analyses confirmed that in a binary system, the presence of Sb(V) exhibited a slight synergistic effect on As(V) adsorption. XPS analyses showed that As(V) and Sb(V) adsorption led to obvious diminishment of Fe-O-Fe and Fe-O-H bonds respectively. At pH of 9, a more significant decrease of Fe-O-Fe was observed in the binary system than that in a single system, indicating that As(V) displayed an even stronger interaction with lattice oxygen atoms under competitive conditions. Basically, ionic strength demonstrated a negligible or positive influence on As(V) and Sb(V) adsorption in binary system. Study of adsorption sequence also indicated that the presence of Sb(V) showed a promotion effect on As(V) adsorption at neutral pHs. Considering that co-contamination of As and Sb in waters has been of great concern throughout the world, our findings contributed to a better understanding of their distribution, mobility, and fate in environment.


Subject(s)
Antimony/chemistry , Arsenic/chemistry , Ferric Compounds/chemistry , Adsorption , Hydrogen-Ion Concentration , Osmolar Concentration , Water Pollutants, Chemical/chemistry
9.
J Hazard Mater ; 346: 124-132, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29253751

ABSTRACT

Trichloroethylene (TCE) degradation in sand columns has been investigated to evaluate the potential of chelates-enhanced Fenton-like reaction with magnetite as iron source for in situ treatment of TCE-contaminated groundwater. The results showed that successful degradation of TCE in sand columns was obtained by nitrilotriacetic acid (NTA)-assisted Fenton-like reaction of magnetite. Addition of ethylenediaminedisuccinic acid (EDDS) resulted in an inhibitory effect on TCE degradation in sand columns. Similar to EDDS, addition of ethylenediaminetetraacetic acid (EDTA) also led to an inhibition of TCE degradation in sand column with small content of magnetite (0.5 w.t.%), but enhanced TCE degradation in sand column with high content of magnetite (7.0 w.t.%). Additionally, the presence of NTA, EDDS and EDTA greatly decreased H2O2 uptake in sand columns due to the competition between chelates and H2O2 for surface sites on magnetite (and sand). Furthermore, the presented results show that magnetite in sand columns remained stable in a long period operation of 230 days without significant loss of performance in terms of TCE degradation and H2O2 uptake. Moreover, it was found that TCE was degraded mainly to formic acid and chloride ion, and the formation of chlorinated organic intermediates was minimal by this process.

10.
Environ Sci Pollut Res Int ; 24(21): 17598-17605, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28597389

ABSTRACT

The present study investigated the degradation of trichloroethylene (TCE) in sand suspensions by Fenton-like reaction with magnetite (Fe3O4) in the presence of various chelators at circumneutral pH. The results showed that ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) greatly improved the rate of TCE degradation, while [S,S]-ethylenediaminedisuccinic acid (s,s-EDDS), malonate, citrate, and phytic acid (IP6) have minimal effects on TCE degradation. Quenching tests suggested that TCE was mainly degraded by hydroxyl radical (HO·) attack, with about 90% inhibition on TCE degradation by the addition of HO· scavenger 2-propanol. The presence of 0.1-0.5% Fe3O4/sand (w/w) contributed to 40% increase in TCE degradation rates. In particular, the use of chelators can avoid high concentrations of H2O2 required for the Fenton-like reaction with Fe3O4, and moreover improve the stoichiometric efficiencies of TCE degradation to H2O2 consumption. The suitable concentrations of chelators (EDTA and NTA) and H2O2 were suggested to be 0.5 and 20 mM, respectively. Under the given conditions, degradation rate constants of TCE were obtained at 0.360 h-1 with EDTA and 0.526 h-1 with NTA, respectively. Enhanced degradation of TCE and decreased usage of H2O2 in this investigation suggested that Fenton-like reaction of Fe3O4 together with NTA (or EDTA) may be a promising process for remediation of TCE-contaminated groundwater.


Subject(s)
Edetic Acid , Nitrilotriacetic Acid , Trichloroethylene , Ferrosoferric Oxide , Groundwater , Hydrogen Peroxide , Hydrogen-Ion Concentration , Iron , Oxidation-Reduction , Suspensions , Water Purification
11.
J Hazard Mater ; 313: 193-200, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27070388

ABSTRACT

In this work, we report a novel Mn(2+)-mediated Fenton-like process based on Fe(III)-NTA complex that is super-efficient at circumneutral pH range. Kinetics experiments showed that the presence of Mn(2+) significantly enhanced the effectiveness of Fe(III)-NTA complex catalyzed Fenton-like reaction. The degradation rate constant of crotamiton (CRMT), a model compound, by the Fe(III)- NTA_Mn(2+) Fenton-like process was at least 1.6 orders of magnitude larger than that in the absence of Mn(2+). Other metal ions such as Ca(2+), Mg(2+), Co(2+) and Cu(2+) had no impacts or little inhibitory effect on the Fe(III)-NTA complex catalyzed Fenton-like reaction. The generation of hydroxyl radical (HO) and superoxide radical anion (O2(-)) in the Fe(III)-NTA_Mn(2+) Fenton-like process were suggested by radicals scavenging experiments. The degradation efficiency of CRMT was inhibited significantly (approximately 92%) by the addition of HO scavenger 2-propanol, while the addition of O2(-) scavenger chloroform resulted in 68% inhibition. Moreover, the results showed that other chelating agents such as EDTA- and s,s-EDDS-Fe(III) catalyzed Fenton-like reactions were also enhanced significantly by the presence of Mn(2+). The mechanism involves an enhanced generation of O2(-) from the reactions of Mn(2+)-chelates with H2O2, indirectly promoting the generation of HO by accelerating the reduction rate of Fe(III)-chelates to Fe(II)- chelates.

12.
J Hazard Mater ; 252-253: 155-65, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23518173

ABSTRACT

This study investigated the kinetics and mechanism of carbamazepine (CBZ) degradation over an initial pH range of 5.0-9.0 by a modified Fenton-like reaction using ferric-nitrilotriacetate (Fe(III)-NTA) complexes. The results indicate that CBZ degradation by Fe(III)-NTA/H2O2 can be described by pseudo first-order kinetics and mainly attributed to hydroxyl radical (OH) attack. Ten intermediates were identified during the degradation process, including hydroxy-CBZs, 10,11-epoxy-CBZ, quinonid CBZ derivatives, dihydroxy-CBZs, and hydroxy-CBZ-10,11-diols. The steady-state concentration of OH, ranging from 3.8 × 10(-16) to 2.1 × 10(-13)M, was strongly dependent on the concentration of Fe(III), the initial pH, and H2O2:Fe(III) and NTA:Fe(III) molar ratios. Optimal conditions of [Fe(III)]=1 × 10(-4)M, [H2O2:Fe(III)]=155:1 and [NTA:Fe(III)]=3:1 were obtained for the degradation of CBZ at neutral pH (7.0) and ambient temperature (25 °C); the corresponding degradation rate constant of CBZ, kapp, was 0.0419 (± 0.002) min(-1). The value of kapp increased with increasing pH from 5.0 to 9.0 due to the strong pH-dependence of Fe(III)-NTA complexes; Fe(III)(NTA)(OH)2(2-) was the most likely active iron species to activate H2O2 to produce OH. The temperature dependence of CBZ degradation by Fe(III)-NTA/H2O2 was characterized by an activation energy of 76.16 kJ mol(-1). A potential mechanism for the formation of OH by Fe(III)-NTA/H2O2 and possible degradation pathways of CBZ are proposed.


Subject(s)
Carbamazepine/chemistry , Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Nitrilotriacetic Acid/analogs & derivatives , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Kinetics , Nitrilotriacetic Acid/chemistry
13.
Environ Sci Pollut Res Int ; 20(1): 10-21, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22723249

ABSTRACT

The objective of this study is to investigate and understand the oxidizing properties of a manganese oxide, specifically synthetic cryptomelane (KMn(8)O(16)) and its derivatives, in aqueous solution. Ciprofloxacin (CIP), a commonly used fluoroquinolone antibiotic, was used as the probe. Synthetic cryptomelane, known as octahedral molecular sieves (OMS-2), was synthesized, and its derivatives were prepared by adding transition metal oxides, V(2)O(5) or MoO(3), as dopants during synthesis. The solids were characterized by x-ray powder diffraction (XRD), SEM-energy-dispersive spectrometry (SEM-EDX), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), Raman spectra, and N(2)-Brunauer-Emmett-Teller method. Degradation of CIP by different doped OMS-2 was carried out. Process conditions were optimized using response surface methodology (RSM). XRD patterns indicated the crystal phase of regular and doped OMS-2 as the cryptomelane type. Presence of the dopants in doped cryptomelane was confirmed by SEM-EDX and XPS. FTIR and Raman results suggested that the dopants were substituted into the framework in place of manganese. SEM images, XRD analysis, and surface area analysis of doped OMS-2 indicated decreased particle size, decreased crystallinity, and increased surface area compared to regular OMS-2. Higher oxidizing reactivity of doped OMS-2 was also observed with increased CIP removal rates from aqueous solution. The enhancement of reactivity may be due to the increase of surface areas. Nine percent Mo/OMS-2, the most effective oxidant of all synthesized derivatives, was selected for optimization study. Favorable treatment conditions were obtained using RSM at pH 3 with molar ratio [9 % Mo/OMS-2]/[CIP] ≥ 50. Under such conditions, more than 90 % CIP can be removed in 30 min. The degradation kinetics was modeled by a modified first order rate with introduction of a retardation factor-α (R (2) > 0.98). Analysis of degradation products indicated that oxidation takes place mainly on the piperazine ring of CIP.


Subject(s)
Ciprofloxacin/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Ciprofloxacin/analysis , Environmental Restoration and Remediation , Kinetics , Models, Chemical , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Water Purification
14.
J Hazard Mater ; 179(1-3): 438-43, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20403660

ABSTRACT

A novel dumbbell-shaped ZnO photocatalyst was successfully synthesized by microwave heating in the present study. The prepared ZnO photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis absorption spectrum (UV-Vis). The results indicated that the prepared ZnO photocatalyst shows a united dumbbell shape with 2 microm diameter and 5 microm length. The photocatalytic activity of the prepared dumbbell-shaped ZnO photocatalyst was evaluated by the degradation of Methylene Blue (MB) in aqueous solution. The effects of pH, catalyst dosage ([ZnO]) and initial concentration of MB ([MB]) on the photocatalytic degradation efficiency of MB were investigated. An optimum condition was determined as pH 7-8, [ZnO]=1.0 g-ZnO L(-1) and [MB]=15 mg-MB L(-1). Under the optimum condition, the decolorization and TOC removal efficiencies of MB at 75 min reaction time were achieved 99.6% and 74.3%, respectively, which were higher than that by the commercial ZnO powder. In addition, the photocatalytic degradation kinetics of MB was also investigated. The results showed that the photocatalytic degradation kinetics of MB fitted the pseudo-first-order kinetics and the Langmuir-Hinshelwood model.


Subject(s)
Zinc Oxide/chemistry , Algorithms , Catalysis , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Indicators and Reagents , Kinetics , Methylene Blue/chemistry , Microscopy, Electron, Scanning , Microwaves , Models, Statistical , Photochemistry , Spectrophotometry, Ultraviolet , X-Ray Diffraction , Zinc Oxide/radiation effects
15.
J Hazard Mater ; 172(2-3): 1520-6, 2009 Dec 30.
Article in English | MEDLINE | ID: mdl-19735975

ABSTRACT

A novel dumbbell-shaped ZnO microcrystal photocatalyst was successfully synthesized by hydrothermal method in the present study. The prepared ZnO photocatalyst was systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG-DTA), photoluminescence spectrum (PL) and UV-vis absorption spectrum (UV-vis). The characterizations of dumbbell-shaped ZnO were also compared with the commercial ZnO. The results show that the prepared ZnO photocatalyst has a unique dumbbell shape and it belongs to the hexagonal wurtzite family. In addition, the photocatalytic activity of the prepared dumbbell-shaped ZnO microcrystal photocatalyst was evaluated by the degradation of three different kinds of dyes wastewater (Crystal Violet, Methyl Violet and Methylene Blue). After 75 min reaction, the decolourization efficiencies of the three kinds of dyes wastewater achieved 68.0%, 99.0% and 98.5%, the TOC removal efficiencies achieved 43.2%, 59.4% and 70.6%, respectively. Compared to commercial ZnO, 16-22% higher TOC removal efficiency was obtained by the dumbbell-shaped ZnO. The results indicated that the prepared dumbbell-shaped ZnO microcrystal photocatalyst showed good photocatalytic activity and it could be considered as a promising photocatalyst for dyes wastewater treatment.


Subject(s)
Coloring Agents/chemistry , Photochemical Processes , Water Pollutants, Chemical/chemistry , Zinc Oxide/chemistry , Catalysis , Crystallization , Gentian Violet , Industrial Waste/prevention & control , Methylene Blue , Molecular Conformation , Zinc Oxide/chemical synthesis
16.
J Hazard Mater ; 161(2-3): 1052-7, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-18538927

ABSTRACT

To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H(2)O(2) and Fe(2+), temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H(2)O(2) dosage 1.0 x 10(-2)M and molar ratio of [H(2)O(2)]/[Fe(2+)] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 x 10(-5) to 1.11 x 10(-4)M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol(-1). The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxygen/chemistry , Chlorides/chemistry , Hydrogen-Ion Concentration , Ions , Kinetics , Models, Chemical , Pressure , Spectrophotometry, Ultraviolet , Temperature , Time Factors
17.
J Hazard Mater ; 153(1-2): 187-93, 2008 May 01.
Article in English | MEDLINE | ID: mdl-17889432

ABSTRACT

The degradation of p-nitroaniline (PNA) in water by solar photo-Fenton advanced oxidation process was investigated in this study. The effects of different reaction parameters including pH value of solutions, dosages of hydrogen peroxide and ferrous ion, initial PNA concentration and temperature on the degradation of PNA have been studied. The optimum conditions for the degradation of PNA in water were considered to be: the pH value at 3.0, 10 mmol L(-1) H(2)O(2), 0.05 mmol L(-1) Fe(2+), 0.072-0.217 mmol L(-1) PNA and temperature at 20 degrees C. Under the optimum conditions, the degradation efficiencies of PNA were more than 98% within 30 min reaction. The degradation characteristic of PNA showed that the conjugated pi systems of the aromatic ring in PNA molecules were effectively destructed. The experimental results indicated solar photo-Fenton process has more advantages compared with classical Fenton process, such as higher oxidation power, wider working pH range, lower ferrous ion usage, etc. Furthermore, the present study showed the potential use of solar photo-Fenton process for PNA containing wastewater treatment.


Subject(s)
Aniline Compounds/chemistry , Aniline Compounds/radiation effects , Ferrous Compounds/chemistry , Hydrogen Peroxide/chemistry , Oxidants/chemistry , Sunlight , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Hydrogen-Ion Concentration , Oxidation-Reduction , Temperature , Waste Disposal, Fluid/methods , Water Purification/methods
18.
J Hazard Mater ; 148(1-2): 172-7, 2007 Sep 05.
Article in English | MEDLINE | ID: mdl-17379403

ABSTRACT

A detailed kinetic model was developed for the degradation of p-nitroaniline (PNA) by Fenton oxidation. Batch experiments were carried out to investigate the role of pH, hydrogen peroxide and Fe(2+) levels, PNA concentration and the temperature. The kinetic rate constants, k(ap), for PNA degradation at different reaction conditions were determined. The test results show that the decomposition of PNA proceeded rapidly only at pH value of 3.0. Increasing the dosage of H(2)O(2) and Fe(2+) enhanced the k(ap) of PNA degradation. However, higher levels of H(2)O(2) also inhibited the reaction kinetics. The k(ap) of PNA degradation decreased with the increase of initial PNA concentration, but increased with the increase of temperature. Based on the rate constants obtained at different temperatures, the empirical Arrhenius expression of PNA degradation was derived. The derived activation energy for PNA degradation by Fenton oxidation is 53.96 kJ mol(-1).


Subject(s)
Aniline Compounds/chemistry , Environmental Restoration and Remediation/methods , Industrial Waste/prevention & control , Water Pollutants, Chemical/chemistry , Water Purification/methods , Hydrogen Peroxide , Hydrogen-Ion Concentration , Iron , Kinetics , Models, Chemical , Oxidation-Reduction , Temperature , Thermodynamics
19.
Ultrason Sonochem ; 14(6): 761-6, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17291814

ABSTRACT

A combination of ultrasonic and low concentration iron (<3 mgL(-1)) of Fenton process (US/Fenton) has been used to treat wastewater containing Acid black 1 (AB1). The results show that the oxidation power of low concentration iron of Fenton could be significantly enhanced by ultrasonic irradiation. The degradation of AB1 in aqueous solution by US/Fenton can receive better results compared with either Fenton oxidation or ultrasonic alone. Many operational parameters, such as ultrasonic power density, the pH value, the Fe(2+) dosage, the H(2)O(2) dosage, AB1 concentration and the temperature, affecting the degradation efficiency were investigated. Also, the effects of various inorganic anions (such as Cl(-), NO(3)(-), CO(3)(2-), etc.) on the oxidation efficiency of US/Fenton were studied. Under the given test conditions, 98.83% degradation efficiency was achieved after 30 min reaction by US/Fenton. The effect of various inorganic anions was in the following decreasing order: SO(3)(2-)>CH(3)COO(-)>Cl(-)>CO(3)(2-)>HCO(3)(-)>SO(4)(2-)>NO(3)(-). The results show that the US/Fenton can be an effective technology for the treatment of organic dyes in wastewater.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Sonication , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Industrial Waste/prevention & control , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...