Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5992, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013869

ABSTRACT

Metasurfaces are capable of fully reshaping the wavefronts of incident beams in desired manners. However, the requirement for external light excitation and the resonant nature of their meta-atoms, make challenging their on-chip integration. Here, we introduce the concept and design of a fresh class of metasurfaces, driven by unidirectional guided waves, capable of arbitrary wavefront control based on the unique dispersion properties of unidirectional guided waves rather than resonant meta-atoms. Upon experimentally demonstrating the feasibility of our designs in the microwave regime, we numerically validate the introduced principle through the design of several microwave meta-devices using metal-air-gyromagnetic unidirectional surface magneto-plasmons, agilely converting unidirectional guided modes into the wavefronts of 3D Bessel beams, focused waves, and controllable vortex beams. We, further, numerically demonstrate sub-diffraction focusing, which is beyond the capability of conventional metasurfaces. Our unfamiliar yet practical designs may enable full, broadband manipulation of electromagnetic waves on deep subwavelength scales.

2.
Langmuir ; 40(23): 11903-11913, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38813993

ABSTRACT

In this study, the dual strategy of 1-butyl-3-vinylimidazolium bromide ionic liquid (IL) grafting and carbon nanotubes (CNTs) nanocomposition was applied to modify poly(vinylidene fluoride) (PVDF)-based membranes. The highly hydrophilic/oleophobic and fouling-resistant PVDF-g-IL/CNTs membranes with excellent separation efficiency were obtained by the nonsolvent-induced phase separation method with ethanol-water mixed solution as the coagulation bath. The grafted IL not only generated hydrophilic groups on PVDF chains but also acted together with the CNTs to induce the formation of hydrophilic ß-crystalline phase of PVDF, which significantly improved the hydrophilicity and pore structure of the modified PVDF membranes. As a result, the pure water flux of the optimal membrane increased up to 294.2 L m-2 h-1, which was 5.2 times greater than that of the pure PVDF membrane. Simultaneously, the electrostatic interaction of the positive IL and the integration of CNTs enhanced adsorption sites of the membranes, producing exceptional retention and adsorption of dye wastewater and oil-water emulsion. This study presents a straightforward and efficient approach for fabricating PVDF separation membranes, which have potential applications in the purification of various polluted wastewater.

3.
Poult Sci ; 103(4): 103477, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364605

ABSTRACT

In the broiler-breeding industry, phenotype determination is critical. Leg weight is a fundamental indicator for breeding, and noninvasive testing technology can reduce damage to animals. This study proposes a broiler leg weight estimation system comprising a weight-estimation model and computed tomography (CT) acquisition equipment. The weight-estimation model can automatically process the scan results of live broiler chickens from the CT acquisition equipment. The weight-estimation model comprises an improved you-only-look-once (YOLOv5) segmentation algorithm and a random forest fitting network. The segmentation head was introduced into the YOLOv5 network, combined with a multiscale attention mechanism and an atrous spatial pyramid pooling architecture, and a new network model, YOLO- measuring chicken leg weight (YOLO-MCLW), was proposed to improve segmentation efficiency and accuracy. Morphological parameters were extracted from the obtained mask image, and a random forest network was used for fitting. The experiments show that the system exhibited an average absolute error of 7.27 g and an average percentage error of 4.82% in tests on 50 individual legs of 25 broiler chickens. The prediction R2 of broiler chicken legs can reaches 88.98%, the segmentation intersection over union result reaches 95.45%, and 37.04 images are processed per second. This system provides technical support for the part determination of broiler chickens in commercial breeding.


Subject(s)
Chickens , Deep Learning , Animals , Algorithms , Technology , Tomography, X-Ray Computed
4.
Langmuir ; 40(4): 2210-2219, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38215044

ABSTRACT

Nitroaromatic compounds have a wide range of applications. However, they pose a significant threat to both the environment and human health. Ionic liquid hydrogels (ILs-gels) have emerged as a cost-effective and environmentally friendly option for various applications. However, conventional ILs-gels are known to possess mechanical flaws or defects. The procedure utilized a facile synthesis route that involved the polymerization of acrylamide (AM) and ionic liquids (ILs) to create a novel candidate for nanoparticle absorption. This study resolved this issue by creating toughened hydrophobic combined hydrogels synthesized through the addition of SiO2@poly(butyl acrylate) core-shell inorganic-organic hybrid latex particles (SiO2@PBA) to the AM-ILs mixture. The SiO2@PBA particles were chosen to provide the hydrogels with exceptional stretchability (up to 4050% strain) and high mechanical properties (tensile strength of 126 kPa) by acting as both a nanotoughener and a cross-linking point for hydrophobic linkage. Additionally, the P(AM/ILs)-SiO2@PBA hydrogel served as a template for the in situ and stable formation of palladium (Pd) nanoparticles. By incorporation of these Pd nanoparticles as catalysts into P(AM/ILs)-SiO2@PBA hydrogel carriers, the resulting P(AM/ILs)-SiO2@PBA/Pd hydrogels exhibited the ability to catalyze the degradation of p-nitrophenol. Remarkably, even after 15 applications, the efficiency of the degradation process remained consistently above 90%. Thus, the innovative SiO2@PBA toughened ILs-hydrogel design strategy can be utilized to develop robust and stretchable hydrogel materials for catalytic use in the sewage disposal industry.

5.
Phys Chem Chem Phys ; 25(47): 32482-32492, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37994561

ABSTRACT

Polymer-based dielectric materials have been used in film capacitors due to their rapid charge-discharge rate, lightness, and low cost. Nevertheless, the energy storage properties of these dielectric films were limited by their weak polarization ability and low discharge energy density. Herein, the solution casting method was used to prepare all-organic crosslinked composite films using linear methyl methacrylate-co-glycidyl methacrylate (MG) as the matrix and ferroelectric poly(vinylidene fluoride) (PVDF) as the organic filler. The crosslinked MG networks can enhance the breakdown strength, restrain dielectric loss, and keep high discharge efficiency. What's more, the presence of PVDF can compensate for the low electrical displacement, improve the permittivity, and overcome the brittleness of the crosslinked films. The optimal all-organic crosslinked dielectric film exhibited an ultrahigh breakdown strength of 800 MV m-1 and a high efficiency of 77.4%. The maximum energy density of the composite film reached up to 12.1 J cm-3, which was nearly 120% higher than the energy density of 5.6 J cm-3 of the pure MG film. The enhancement in energy storage properties is ascribed to the synergistic effects of chemical crosslinking and hydrogen bonding. This study offers a feasible method for all-organic polymer films to fabricate energy storage equipment.

6.
Opt Express ; 31(21): 34112-34122, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859175

ABSTRACT

Plasmonic vortices have shown a wide range of applications in on-chip photonics due to their fascinating properties of the orbital angular momenta (OAM) and phase singularity. However, conventional devices to generate them suffer from issues of low efficiencies and limited functionalities. Here, we establish a systematic scheme to construct high-efficiency bifunctional metasurfaces that can generate two plasmonic vortices exhibiting distinct topological charges, based on a series of reflective meta-atoms exhibiting tailored reflection-phases dictated by both resonant and geometric origins. As a benchmark test, we first construct a meta-coupler with meta-atoms exhibiting geometric phases only, and experimentally demonstrate that it can generate a pre-designed plasmonic vortex at the wavelength of 1064 nm with an efficiency of 27% (56% in simulation). Next, we design/fabricate two bifunctional metasurfaces with meta-atoms integrated with both resonant and geometric phases, and experimentally demonstrate that they can generate divergent (or focused) or convergent (or defocused) plasmonic vortices with district OAM as shined by circularly polarized light with opposite helicity at 1064 nm wavelength. Our work provides an efficient platform to generate plasmonic vortices as desired, which can find many applications in on-chip photonics.

7.
J Hazard Mater ; 460: 132435, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37651930

ABSTRACT

In the process of removing dye wastewater, the membrane surface is susceptible to contamination, resulting in reduced performance and limited dye separation efficiency. A single hydrophilic modification layer is not enough to achieve effective separation of different types of dyes. The present research designed a "double layer protection" method in order to overcome the above deficiencies. A solution of dopamine (DA) coated carbon nanotubes (CNTs-COOH) was covered on the surface of the polyvinylidene fluoride (PVDF) membrane by deposition, followed by grafting a layer of chitosan (CS) polymer brushes on its surface. The spatial double layer structure provides an excellent barrier effect and effectively reduces the contamination of dyes. When filtering different types of dyes, effective filtration of anionic and cationic dyes through the electrostatic effect of the first layer, the adsorption of CNTs in the second layer and the hydration layer of both layers. All membranes have excellent rejection properties. More importantly, the membranes also had good chemical and mechanical stability and their serviceability was not degraded. Therefore, the prepared PVDF-based multi-layer composite membranes behave a potential application prospect in the wastewater purification field.

8.
Phys Chem Chem Phys ; 25(32): 21307-21316, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37552168

ABSTRACT

All-organic polymer dielectric films have been widely used for different electrical devices in recent years. However, their development is impeded by low Ue and large device volume. In the present paper, polyvinylidene fluoride (PVDF) composite dielectric materials, with high energy density (Ue) and energy efficiency (η), were prepared through the synergistic effect of a new MMA-co-GMA (MG) copolymer and cyanoethylated cellulose. MG was miscible with PVDF, which reduced the dielectric loss (tan δ) and improved the η of PVDF due to the linear structure and the hydrogen bonding interaction with the epoxy groups for MG. To further enhance the Ue of the dielectric films, cyanoethylated cellulose (CR-C) was added as a third component into the PVDF composite matrix to improve the Ue. The deep trap effect of hydrogen bonds between PVDF/MG and CR-C improved the electric breakdown strength (Eb) of the three-phase composite films from 440 MV m-1 to 640 MV m-1. Moreover, the high polarization of cyanoethylated cellulose can significantly improve the Ue (24.43 J cm-3) of the three-phase composite dielectric film, and the efficiency can be maintained above 75% at 640 MV m-1. This research provides a new idea for the manufacturing of homogeneous and stable all-organic PVDF dielectric composite films based on the hydrogen bonding construction strategy.

9.
Int J Biol Macromol ; 245: 125634, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37399876

ABSTRACT

Functional catalytic hydrogels were a promising catalyst carrier with the advantages of low cost, high efficiency and environmental friendliness. However, conventional hydrogels suffered from mechanical defects and brittleness. Acrylamide (AM) and lauryl methacrylate (LMA) were used as raw materials, SiO2-NH2 spheres as toughening agents, and chitosan (CS) as stabilizers to form hydrophobic binding networks. p(AM/LMA)/SiO2-NH2/CS hydrogels exhibited superior stretchability and withstood strains up to 14,000 %. In addition, these hydrogels exhibited exceptional mechanical properties, including a tensile strength of 213 kPa and a toughness of 13.1 MJ/m3. Surprisingly, the introduction of chitosan into hydrogels showed excellent antibacterial activity against S. aureus and E. coli. At the same time, the hydrogel served as a template for the formation of Au nanoparticles. This resulted in high catalytic activity for methylene blue (MB) and Congo red (CR) on p(AM/LMA)/SiO2-NH2/CS-8 %-Au hydrogels with Kapp of 1.038 and 0.76 min-1, respectively. The catalyst was also found to be reusable for 10 cycles while maintaining an efficiency of over 90 %. Therefore, innovative design strategies can be used to develop durable and scalable hydrogel materials for catalysis in the wastewater treatment industry.

10.
Langmuir ; 39(24): 8390-8403, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37289441

ABSTRACT

In the present work, self-cleaning membranes of ionic liquid-grafted poly(vinylidene fluoride) (PVDF) polydopamine-coated TiO2 were prepared through a nonsolvent-induced phase separation method. PDA facilitates the uniform dispersion of TiO2 nanoparticles in PVDF substrates; meanwhile, TiO2@PDA core-shell particles and the hydrophilic IL improve the hydrophilicity of PVDF membranes and contribute to the increased average pore size and porosity, significantly improving the pure water permeation flux and dye wastewater flux (the water flux increased to 385.9 Lm-2 h-1). In addition, the combined effect of the positively charged IL and the strongly viscous PDA shell layer enhanced the retention and adsorption of dyes so that the retention and adsorption rates of both anionic and cationic dyes were close to 100%. Notably, the hydrophilic PDA allowed more TiO2 to migrate to the membrane surface during the phase transition; on the other hand, dopamine could promote photodegradation. Therefore, the combined two factors for TiO2@PDA were beneficial to the ultraviolet-catalytic (UV-catalytic) degradation of dyes on the surface of the membrane, leading to >80% degradation rates of various dyes. Thus, the high-efficiency and easy-to-operate wastewater treatment technology provides attractive potential for dye removal and resolution of membrane contamination.

11.
Langmuir ; 39(25): 8698-8709, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37314954

ABSTRACT

Traditional hydrogels with a single-crosslinked network structure suffer from poor stretchability, low sensitivity, and easy contamination, which seriously affect their practical application in the strain sensor field. To overcome these shortcomings, herein, a multiphysical crosslinking strategy (ionic crosslinking and hydrogen bonding) was designed to prepare a hydrogel strain sensor based on chitosan quaternary ammonium salt (HACC)-modified P(AM-co-AA) (acrylamide-co-acrylic acid copolymer) hydrogels. The ionic crosslinking for the double-network P(AM-co-AA)/HACC hydrogels was achieved by an immersion method with Fe3+ as crosslinking sites, which crosslinked with the amino group (-NH2) on HACC and the carboxyl group (-COOH) on P(AM-co-AA) and enabled the hydrogels to recover and reorganize rapidly, resulting in a hydrogel-based strain sensor with excellent tensile stress (3 MPa), elongation (1390%), elastic modulus (0.42 MPa), and toughness (25 MJ/m3). In addition, the prepared hydrogel exhibited high electrical conductivity (21.6 mS/cm) and sensitivity (GF = 5.02 at 0-20% strain, GF = 6.84 at 20-100% strain, and GF = 10.27 at 100-480% strain). Furthermore, the introduction of HACC endowed the hydrogel with excellent antibacterial properties (up to 99.5%) and excellent antibacterial activity against bacteria of three forms, bacilli, cocci, and spores. The flexible, conductive, and antibacterial hydrogel can be applied as a strain sensor for real-time detection of human motions such as joint movement, speech, and respiration, which exhibits a promising application prospect in wearable devices, soft robotic systems, and other fields.

12.
Front Oncol ; 13: 1121594, 2023.
Article in English | MEDLINE | ID: mdl-37035167

ABSTRACT

Objective: The mortality of colorectal cancer patients with pelvic bone metastasis is imminent, and timely diagnosis and intervention to improve the prognosis is particularly important. Therefore, this study aimed to build a bone metastasis prediction model based on Gray level Co-occurrence Matrix (GLCM) - based Score to guide clinical diagnosis and treatment. Methods: We retrospectively included 614 patients with colorectal cancer who underwent pelvic multiparameter magnetic resonance image(MRI) from January 2015 to January 2022 in the gastrointestinal surgery department of Gezhouba Central Hospital of Sinopharm. GLCM-based Score and Machine learning algorithm, that is,artificial neural net7work model(ANNM), random forest model(RFM), decision tree model(DTM) and support vector machine model(SVMM) were used to build prediction model of bone metastasis in colorectal cancer patients. The effectiveness evaluation of each model mainly included decision curve analysis(DCA), area under the receiver operating characteristic (AUROC) curve and clinical influence curve(CIC). Results: We captured fourteen categories of radiomics data based on GLCM for variable screening of bone metastasis prediction models. Among them, Haralick_90, IV_0, IG_90, Haralick_30, CSV, Entropy and Haralick_45 were significantly related to the risk of bone metastasis, and were listed as candidate variables of machine learning prediction models. Among them, the prediction efficiency of RFM in combination with Haralick_90, Haralick_all, IV_0, IG_90, IG_0, Haralick_30, CSV, Entropy and Haralick_45 in training set and internal verification set was [AUC: 0.926,95% CI: 0.873-0.979] and [AUC: 0.919,95% CI: 0.868-0.970] respectively. The prediction efficiency of the other four types of prediction models was between [AUC: 0.716,95% CI: 0.663-0.769] and [AUC: 0.912,95% CI: 0.859-0.965]. Conclusion: The automatic segmentation model based on diffusion-weighted imaging(DWI) using depth learning method can accurately segment the pelvic bone structure, and the subsequently established radiomics model can effectively detect bone metastases within the pelvic scope, especially the RFM algorithm, which can provide a new method for automatically evaluating the pelvic bone turnover of colorectal cancer patients.

13.
Nano Lett ; 23(8): 3326-3333, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37026788

ABSTRACT

On-chip photonic systems play crucial roles in nanoscience and nanoapplications, but coupling external light to these subwavelength devices is challenging due to a large mode mismatch. Here, we establish a new scheme for realizing highly miniaturized couplers for efficiently exciting on-chip photonic devices in a controllable way. Relying on both resonant and Pancharatnam-Berry mechanisms, our meta-device can couple circularly polarized light to a surface plasmon, which is then focused into a spot placed with a target on-chip device. We experimentally demonstrate two meta-couplers. The first can excite an on-chip waveguide (with a 0.1λ × 0.2λ cross section) with an absolute efficiency of 51%, while the second can achieve incident spin-selective excitation of a dual-waveguide system. Background-free excitation of a gap-plasmon nanocavity with the local field enhanced by >1000 times is numerically demonstrated. Such a scheme connects efficiently propagating light in free space and localized fields in on-chip devices, being highly favored in many integration-optics applications.

14.
Langmuir ; 39(10): 3710-3719, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36869872

ABSTRACT

Linear dielectric polymers are potential candidates for electrostatic capacitors due to their high breakdown strength, high efficiency, and low dielectric loss. In this work, a novel poly (vinylidene fluoride) (PVDF) tailored linear PMMA-co-GMA (MG) copolymer-based all-organic dielectric film with high breakdown strength and discharge energy density was prepared by the solution blending method. Compared with the PMMA homopolymer, the MG copolymer behaved with a higher energy density (5.6 J/cm3) since the GMA component bestowed higher polarity and yielded deep traps for the copolymer. On the other hand, the introduction of PVDF into MG further improved the dielectric constant and overcame the brittleness of MG films. When the concentration of PVDF was 30 wt %, the MG/PVDF film exhibited a high discharged energy density of 10.8 J/cm3 at 600 MV/m with a 78.7% discharge efficiency, which was 2.5 times that of pure PVDF (4.3 J/cm3 at 320 MV/m) and 1.9 times that of pure MG (5.6 J/cm3 at 460 MV/m). The improvement in energy storage performance might be ascribed to the excellent thermodynamic miscibility and hydrogen bond interaction between the linear MG copolymer and the ferroelectric PVDF. This research provides a new and feasible strategy for designing all-organic dielectric films with high energy density for energy storage applications.

15.
Langmuir ; 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36630713

ABSTRACT

Soft, conductive, and stretchable sensors are highly desirable in many applications, including artificial skin, biomonitoring patches, and so on. Recently, a combination of good electrical and mechanical properties was regarded as the most important evaluation criterion for judging whether hydrogel sensors are suitable for practical applications. Herein, we demonstrate a novel carboxylated carbon nanotube (MWCNT-COOH)-embedded P(AM/LMA)/SiO2@PANI hydrogel. The hydrogel benefits from a double-network structure (hydrogen bond cross-linking and hydrophobic connectivity network) due to the role of MWCNT-COOH and SiO2@PANI as cross-linkers, thus resulting in tough composite hydrogels. The obtained P(AM/LMA)/SiO2@PANI/MWCNT-COOH hydrogels exhibited high tensile strength (1939 kPa), super stretchability (3948.37%), and excellent strain sensitivity (gauge factor = 11.566 at 100-1100% strain). Obviously, MWCNT-COOH not only improved the electrical conductivity but also enhanced the mechanical properties of the hydrogel. Therefore, the integration of MWCNT-COOH and SiO2@PANI-based hydrogel strain sensors will display broad application in sophisticated intelligence, soft robotics, bionic prosthetics, personal health care, and other fields using inexpensive, green, and easily available biomass.

16.
Nat Med ; 29(2): 493-503, 2023 02.
Article in English | MEDLINE | ID: mdl-36702948

ABSTRACT

Early detection of visual impairment is crucial but is frequently missed in young children, who are capable of only limited cooperation with standard vision tests. Although certain features of visually impaired children, such as facial appearance and ocular movements, can assist ophthalmic practice, applying these features to real-world screening remains challenging. Here, we present a mobile health (mHealth) system, the smartphone-based Apollo Infant Sight (AIS), which identifies visually impaired children with any of 16 ophthalmic disorders by recording and analyzing their gazing behaviors and facial features under visual stimuli. Videos from 3,652 children (≤48 months in age; 54.5% boys) were prospectively collected to develop and validate this system. For detecting visual impairment, AIS achieved an area under the receiver operating curve (AUC) of 0.940 in an internal validation set and an AUC of 0.843 in an external validation set collected in multiple ophthalmology clinics across China. In a further test of AIS for at-home implementation by untrained parents or caregivers using their smartphones, the system was able to adapt to different testing conditions and achieved an AUC of 0.859. This mHealth system has the potential to be used by healthcare professionals, parents and caregivers for identifying young children with visual impairment across a wide range of ophthalmic disorders.


Subject(s)
Deep Learning , Smartphone , Male , Infant , Humans , Child , Child, Preschool , Female , Eye , Health Personnel , Vision Disorders/diagnosis
17.
Article in English | MEDLINE | ID: mdl-36718408

ABSTRACT

This study aimed to explore the effect and mechanism of Dragon's Blood on wound healing in patients with a pressure hand injury. A total of 120 patients with pressure hand injury treated in our hospital were randomly divided into two groups. Sixty patients in the control group were dressed with sterile gauze, and 60 patients in the observation group were smeared with blood exhaustion. The clinical effects and serological indexes of the two groups were compared, and the mechanism of wound healing was analyzed. The results showed that the treatment effective rate of the control group was 80% and that of the observation group was 93.33%. The treatment effective rate of the observation group was dramatically higher (P < 0.05). The number of patients with good granulation tissue in the observation group was 53, which was dramatically greater than that in the control group. The number of patients with a small amount of wound exudation was 51, which was dramatically greater than that in the control group (P < 0.05). After treatment, the levels of matrix metalloproteinase (MMP-3), vascular endothelial growth factor (VEGF), and transforming growth factor B1 (TGF-B1) in the observation group increased more dramatically (P < 0.05). The level of tissue inhibitor of metalloproteinase-1 (TIMP-1) decreased to 617.23 ng/L in the observation group, and the degree of reduction was more obvious (P < 0.05). Notably, Dragon's Blood promoted wound healing at the injury site by increasing the levels of MMP-3, VEGF, and TGF-B1and decreasing TIMP-1. The area of wound reduction in the observation group was 0.27 cm2, and the reduction was more obvious (P < 0.05). The healing time of pressure hand injury in the observation group was 15.27 days, which was dramatically shorter (P < 0.05). In summary, Dragon's Blood had a good effect on the healing of the injured site in patients with pressure hand injury, which is worthy of promotion.

18.
Adv Sci (Weinh) ; 10(4): e2205499, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36494100

ABSTRACT

Multifunctional terahertz (THz) devices in transmission mode are highly desired in integration-optics applications, but conventional devices are bulky in size and inefficient. While ultra-thin multifunctional THz devices are recently demonstrated based on reflective metasurfaces, their transmissive counterparts suffer from severe limitations in efficiency and functionality. Here, based on high aspect-ratio silicon micropillars exhibiting wide transmission-phase tuning ranges with high transmission-amplitudes, a set of dielectric metasurfaces is designed and fabricated to achieve efficient spin-multiplexed wavefront controls on THz waves. As a benchmark test, the photonic-spin-Hall-effect is experimentally demonstrated with a record high absolute efficiency of 92% using a dielectric metasurface encoded with geometric phases only. Next, spin-multiplexed controls on circularly polarized THz beams (e.g., anomalous refraction and focusing) are experimentally demonstrated with experimental efficiency reaching 88%, based on a dielectric meta-device encoded with both spin-independent resonant phases and spin-dependent geometric phases. Finally, high-efficiency spin-multiplexed dual holographic images are experimentally realized with the third meta-device encoded with both resonant and geometric phases. Both near-field and far-field measurements are performed to characterize these devices, yielding results in agreement with full-wave simulations. The study paves the way to realize multifunctional, high-performance, and ultra-compact THz devices for applications in biology sensing, communications, and so on.

19.
J Food Biochem ; 46(12): e14437, 2022 12.
Article in English | MEDLINE | ID: mdl-36226905

ABSTRACT

Trypsin can significantly improve the storage quality of Hylocereus undatus (H. undatus). To verify the hub WRKY gene of H. undatus in trypsin preservation, joint analysis of transcriptome and protein-protein interaction (PPI) network was carried out, and virus-induced gene silencing (VIGS) was conducted. In the transcriptome of H. undatus, GO directed acyclic graph (DAG) showed that the GO terms of 55 WRKY genes were mainly enriched in sequence-specific DNA binding, DNA binding transcription factor activity, and so on. The GO enrichment chord diagram showed that HuWRKY40 was significantly up-regulated in the enriched top10 GO terms. KEGG enrichment analysis showed that 55 WRKY genes were mainly enriched in plant-pathogen interaction and MAPK pathway. The results of PPI network showed that HuWRKY40 was a hub protein of WRKY transcription factors (TFs) family regulated by trypsin, which was consistent with the results of transcriptome analysis. Bioinformatics analysis showed that HuWRKY40 of H. undatus had the highest homology with Beta vulgaris L. and Spinacia oleracea L. The function of the core regulatory protein HuWRKY40 was further clarified by VIGS technology. The results of VIGS showed that there was a big difference between the phenotype of the pTRV2-HuWRKY40 group and that of the control group. Finally, it was confirmed that HuWRKY40 accelerated the synthesis of flavonoids and improved the fruit quality during the storage of H. undatus. This study found that trypsin may regulate HuWRKY40 activity through the MAPK cascade pathway, affect the participation of flavonoid synthesis, and then delay fruit corruption. PRACTICAL APPLICATIONS: With attention of people to the safety and freshness of fruits and vegetables, biological preservation technology has become one of the hotspots in the field of preservation in recent years. Trypsin can significantly improve the antioxidant capacity of fruits and vegetables. As a new biological preservative, it is convenient to operate and economical. In the current work, the mechanism of trypsin on the WRKY TFs during H. undatus storage was investigated. The application of trypsin would provide a new strategy for the storage quality control of fruits and vegetables.


Subject(s)
Gene Expression Profiling , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Trypsin/genetics , Trypsin/metabolism , Preservation, Biological , Gene Silencing , DNA
20.
Cancer Manag Res ; 13: 8967-8977, 2021.
Article in English | MEDLINE | ID: mdl-34880677

ABSTRACT

PURPOSE: Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment. PATIENTS AND METHODS: We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models. RESULTS: Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability. CONCLUSION: Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.

SELECTION OF CITATIONS
SEARCH DETAIL