Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 13(11): e0206802, 2018.
Article in English | MEDLINE | ID: mdl-30395653

ABSTRACT

BACKGROUND: The pericardial fluid may be representative of the interstitium of the heart. The aim of this study was to discriminate in cardiovascular disease patients between adipocytokines that are produced locally by the heart and those supplied by the circulation. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to determine levels of N-terminal pro-brain natriuretic peptide (NT-pBNP), fatty acid-binding protein 4 (FABP4), leptin, lipocalin-2, neutrophil elastase, proteinase-3, high sensitivity C-reactive protein (hsCRP) and adiponectin in venous plasma and pericardial fluid harvested during elective cardio-thoracic surgery (n = 132-152). RESULTS: In pericardial fluid compared to plasma, the levels were significantly smaller (p < 0.001) for leptin, lipocalin-2, neutrophil elastase, proteinase-3, hsCRP and adiponectin. For these biomarkers, the ratio of pericardial fluid-to-plasma level ([PF]/[P], median (interquartile range)) was 0.65 (0.47-1.01), 0.78 (0.56-1.09), 0.23 (0.11-0.60), 0.17 (0.09-0.36), 0.14 (0.08-0.35), and 0.25 (0.15-0.34), respectively. In contrast, pericardial fluid was significantly enriched (p < 0.001) in NT-pBNP ([PF]/[P]: 1.9 (1.06-2.73)) and even more so for FABP4 ([PF]/[P]: 3.90 (1.47-9.77)). Moreover, in pericardial fluid, the adipocytokines interrelated all significantly positive and correlated negative to hsCRP, whereas for NT-pBNP only a significantly positive correlation with adiponectin was found. These interrelations were distinct from those in the plasma, as were the correlations of the pericardial biomarkers with patient characteristics compared to plasma. CONCLUSIONS: In cardiovascular disease patients, the pericardial cavity is a distinct adipocytokine microenvironment in which especially FABP4 is mainly derived from the heart.


Subject(s)
Cardiovascular Diseases/metabolism , Fatty Acid-Binding Proteins/metabolism , Pericardium/metabolism , Adipokines/blood , Adipokines/metabolism , Adiponectin/blood , Adiponectin/metabolism , Aged , Biomarkers/blood , Biomarkers/metabolism , C-Reactive Protein/metabolism , Cardiovascular Diseases/blood , Fatty Acid-Binding Proteins/blood , Female , Humans , Leptin/blood , Leptin/metabolism , Leukocyte Elastase/blood , Leukocyte Elastase/metabolism , Lipocalin-2/blood , Lipocalin-2/metabolism , Male , Middle Aged , Myeloblastin/blood , Myeloblastin/metabolism , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Peptide Fragments/blood , Peptide Fragments/metabolism
2.
J Immunol ; 196(9): 3854-64, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27001955

ABSTRACT

The prevalence of allergies, including rhinitis, eczema, and anaphylaxis, is rising dramatically worldwide. This increase is especially problematic in children who bear the greatest burden of this rising trend. Increasing evidence identifies neutrophils as primary perpetrators of the more severe and difficult to manage forms of inflammation. A newly recognized mechanism by which neutrophils are recruited during the early phase of histamine-induced inflammation involves the sphingosine kinase (SK)/sphingosine-1-phosphate axis. This study examines whether topical application of fingolimod, an established SK/sphingosine-1-phosphate antagonist already in clinical use to treat multiple sclerosis, may be repurposed to treat cutaneous inflammation. Using two mouse models of ear skin inflammation (histamine- and IgE-mediated passive cutaneous anaphylaxis) we topically applied fingolimod prophylactically, as well as after establishment of the inflammatory response, and examined ear swelling, SK activity, vascular permeability, leukocyte recruitment, and production of proinflammatory mediators. The present study reveals that when applied topically, fingolimod attenuates both immediate and late-phase responses to histamine with reduced extravasation of fluid, SK-1 activity, proinflammatory cytokine and chemokine production, and neutrophil influx and prevents ear swelling. Intravital microscopy demonstrates that histamine-induced neutrophil rolling and adhesion to the postcapillary venules in the mouse ears is significantly attenuated even after 24 h. More importantly, these effects are achievable even once inflammation is established. Translation into humans was also accomplished with epicutaneous application of fingolimod resolving histamine-induced and allergen-induced inflammatory reactions in forearm skin. Overall, this study demonstrates, to our knowledge for the first time, that fingolimod may be repurposed to treat cutaneous inflammation.


Subject(s)
Dermatitis/drug therapy , Fingolimod Hydrochloride/therapeutic use , Multiple Sclerosis/drug therapy , Neutrophils/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Skin/drug effects , Administration, Topical , Animals , Capillary Permeability/drug effects , Cell Movement/drug effects , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Fingolimod Hydrochloride/pharmacology , Histamine/metabolism , Humans , Immunoglobulin E/blood , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Skin/immunology
3.
FASEB J ; 29(9): 3638-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25985799

ABSTRACT

Sphingosine 1-phosphate (S1P) is a bioactive lipid that can function both extracellularly and intracellularly to mediate a variety of cellular processes. Using lipid affinity matrices and a radiolabeled lipid binding assay, we reveal that S1P directly interacts with the transcription factor peroxisome proliferator-activated receptor (PPAR)γ. Herein, we show that S1P treatment of human endothelial cells (ECs) activated a luciferase-tagged PPARγ-specific gene reporter by ∼12-fold, independent of the S1P receptors. More specifically, in silico docking, gene reporter, and binding assays revealed that His323 of the PPARγ ligand binding domain is important for binding to S1P. PPARγ functions when associated with coregulatory proteins, and herein we identify that peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1)ß binds to PPARγ in ECs and their progenitors (nonadherent endothelial forming cells) and that the formation of this PPARγ:PGC1ß complex is increased in response to S1P. ECs treated with S1P selectively regulated known PPARγ target genes with PGC1ß and plasminogen-activated inhibitor-1 being increased, no change to adipocyte fatty acid binding protein 2 and suppression of CD36. S1P-induced in vitro tube formation was significantly attenuated in the presence of the PPARγ antagonist GW9662, and in vivo application of GW9662 also reduced vascular development in Matrigel plugs. Interestingly, activation of PPARγ by the synthetic ligand troglitazone also reduced tube formation in vitro and in vivo. To support this, Sphk1(-/-)Sphk2(+/-) mice, with low circulating S1P levels, demonstrated a similar reduction in vascular development. Taken together, our data reveal that the transcription factor, PPARγ, is a bona fide intracellular target for S1P and thus suggest that the S1P:PPARγ:PGC1ß complex may be a useful target to manipulate neovascularization.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Lysophospholipids/metabolism , Neovascularization, Physiologic/physiology , PPAR gamma/metabolism , Receptors, Lysosphingolipid/metabolism , Sphingosine/analogs & derivatives , Animals , CD36 Antigens/genetics , CD36 Antigens/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , HEK293 Cells , Human Umbilical Vein Endothelial Cells/cytology , Humans , Lysophospholipids/genetics , Mice , Mice, Knockout , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , RNA-Binding Proteins , Receptors, Lysosphingolipid/genetics , Serpin E2/genetics , Serpin E2/metabolism , Sphingosine/genetics , Sphingosine/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , U937 Cells
4.
Cell Transplant ; 24(1): 37-48, 2015.
Article in English | MEDLINE | ID: mdl-24069942

ABSTRACT

The success of pancreatic islet transplantation is limited by delayed engraftment and suboptimal function in the longer term. Endothelial progenitor cells (EPCs) represent a potential cellular therapy that may improve the engraftment of transplanted pancreatic islets. In addition, EPCs may directly affect the function of pancreatic ß-cells. The objective of this study was to examine the ability of EPCs to enhance pancreatic islet transplantation in a murine syngeneic marginal mass transplant model and to examine the mechanisms through which this occurs. We found that cotransplanted EPCs improved the cure rate and initial glycemic control of transplanted islets. Gene expression data indicate that EPCs, or their soluble products, modulate the expression of the ß-cell surface molecule connexin 36 and affect glucose-stimulated insulin release in vitro. In conclusion, EPCs are a promising candidate for improving outcomes in islet transplantation, and their mechanisms of action warrant further study.


Subject(s)
Connexins/biosynthesis , Endothelial Cells/metabolism , Gene Expression Regulation , Insulin-Secreting Cells/metabolism , Islets of Langerhans Transplantation , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Endothelial Cells/pathology , Endothelial Cells/transplantation , Glucose/pharmacology , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/pathology , Male , Mice , Stem Cells/pathology , Sweetening Agents/pharmacology , Transplantation, Isogeneic , Gap Junction delta-2 Protein
5.
Int Immunopharmacol ; 17(4): 1167-75, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23863858

ABSTRACT

Neutrophils are a key mediator of the innate immune system and are pivotal in the inflammatory response to infection or tissue damage. Fundamental to the role that neutrophils play in host defence is their interaction with the vascular endothelium. From the initial mobilisation of neutrophils out of the bone marrow to their ultimate transmigration through the vasculature, endothelial cells are a vital component of the inflammatory process. This review focuses on the interactions that take place between neutrophils and the vascular endothelium during the various stages of the inflammatory response. The role of the vascular endothelium in detecting the initial episode of infection or tissue damage is explored and how this ultimately leads to mobilisation of the neutrophils from the bone marrow and into the bloodstream. The recruitment and adhesion of neutrophils to the vascular endothelium is also discussed, with particular emphasis on the various discrete stages of the adhesion cascade and what molecules mediate these steps. In addition, a novel role for the lipid kinase sphingosine kinase in neutrophil adhesion is examined. With the advent of improved imaging techniques and the development of new animal models, this is a dynamic area of research and this review aims to summarise some of the more recent findings.


Subject(s)
Endothelium, Vascular/physiology , Neutrophils/physiology , Animals , Cell Movement , Humans , Phosphotransferases (Alcohol Group Acceptor)/physiology
7.
Am J Pathol ; 180(4): 1740-50, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22322303

ABSTRACT

Leukocyte recruitment to sites of inflammation is critical for the development of acute allergic responses. Rapid P-selectin up-regulation by endothelial cells is a key promoter of leukocyte infiltration in response to mediators such as histamine. However, the mechanisms underpinning this process are still incompletely understood. We examined the role of the sphingosine kinase/sphingosine-1-phosphate (SK/S1P) pathway and showed that in human umbilical vein endothelial cells, histamine rapidly activates SK in an extracellular signal-regulated kinase (ERK) 1/2-dependent manner, concurrent with the induction of P-selectin expression. Histamine activated both SK-1 and SK-2 isoforms; inhibition of SK-1, but not SK-2, attenuated histamine-induced P-selectin up-regulation and neutrophil rolling in vitro. S1P receptor antagonists failed to prevent histamine-induced P-selectin expression, and exogenous S1P did not increase P-selectin expression, suggesting that S1P cell surface receptors are not involved in this process. Finally, the role of both SK-1 and SK-2 in histamine-induced leukocyte rolling in vivo was assessed using pharmacological and genetic methods. Consistent with the in vitro findings, mice pretreated with either sphingosine kinase inhibitor or fingolimod (FTY720) significantly attenuated histamine-induced leukocyte rolling in the cremaster muscle. Similarly, Sphk1(-/-) but not Sphk2(-/-) mice exhibited reduced histamine-induced leukocyte rolling. These findings demonstrate a key role for SK-1 in histamine-induced rapid P-selectin up-regulation and associated leukocyte rolling, and suggest that endothelial SK-1 is an important contributor to allergic inflammation.


Subject(s)
Histamine/pharmacology , Neutrophil Infiltration/drug effects , Phosphotransferases (Alcohol Group Acceptor)/physiology , Animals , Cells, Cultured , Enzyme Inhibitors/pharmacology , Fingolimod Hydrochloride , Hemodynamics/physiology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immunosuppressive Agents/pharmacology , Leukocyte Count , Leukocyte Rolling/drug effects , Leukocyte Rolling/physiology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice , Mice, Knockout , Neutrophil Infiltration/physiology , P-Selectin/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/pharmacology , Propylene Glycols/pharmacology , Receptors, Lysosphingolipid/physiology , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Up-Regulation/drug effects
8.
J Allergy (Cairo) ; 2012: 154174, 2012.
Article in English | MEDLINE | ID: mdl-23316248

ABSTRACT

Allergic inflammation is an immune response to foreign antigens, which begins within minutes of exposure to the allergen followed by a late phase leading to chronic inflammation. Prolonged allergic inflammation manifests in diseases such as urticaria and rhino-conjunctivitis, as well as chronic asthma and life-threatening anaphylaxis. The prevalence of allergic diseases is profound with 25% of the worldwide population affected and a rising trend across all ages, gender, and racial groups. The identification and avoidance of allergens can manage this disease, but this is not always possible with triggers being common foods, prevalent air-borne particles and only extremely low levels of allergen exposure required for sensitization. Patients who are sensitive to multiple allergens require prophylactic and symptomatic treatments. Current treatments are often suboptimal and associated with adverse effects, such as the interruption of cognition, sleep cycles, and endocrine homeostasis, all of which affect quality of life and are a financial burden to society. Clearly, a better therapeutic approach for allergic diseases is required. Herein, we review the current knowledge of allergic inflammation and discuss the role of sphingolipids as potential targets to regulate inflammatory development in vivo and in humans. We also discuss the benefits and risks of using sphingolipid inhibitors.

9.
Am J Pathol ; 177(1): 436-46, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20522645

ABSTRACT

Leukocyte recruitment plays a major role in the immune response to infectious pathogens, as well as during inflammatory and autoimmune disorders. The process of leukocyte extravasation from the blood requires a complex cascade of adhesive events between the leukocytes and the endothelium, including initial leukocyte rolling, adhesion, and finally transendothelial migration. Current research in this area aims to identify the key leukocyte subsets that initiate a given disease and to identify the trafficking molecule(s) that will most specifically inhibit those cells. Herein we demonstrate that tumor necrosis factor (TNF)alpha activates the integrin alpha(5)beta(1) without altering total expression levels of beta(1) integrin on human umbilical vein endothelial cells. Moreover, our studies suggest that TNFalpha-induced beta(1) activation is dependent on sphingosine kinase-1, but independent of the sphingosine-1-phosphate family of G protein-coupled receptors. We also show, using a parallel plate flow chamber assay, that neutrophil adhesion to TNFalpha-activated endothelium can be attenuated by blocking alpha(5)beta(1) or its ligand angiopoietin-2. These observations add new complexities that broaden the accepted concept of cellular trafficking with neutrophil adhesion to TNFalpha activated endothelial cells being sphingosine kinase-1, alpha(5)beta(1), and angiopoietin-2 dependent. Moreover, this work supports the notion that sphingosine kinase-1 may be the single target required for an effective broad spectrum approach to combat inflammation and immune disorders.


Subject(s)
Cell Adhesion/drug effects , Integrin alpha5beta1/metabolism , Neutrophils/drug effects , Neutrophils/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Angiopoietin-2/metabolism , Animals , Cell Line , Humans , Mice , Neutrophils/cytology
10.
Am J Pathol ; 175(5): 2217-25, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19815712

ABSTRACT

Sphingosine kinase (SK)-1 promotes endothelial cell (EC) survival through the cell junction molecule CD31 (platelet endothelial cell adhesion molecule-1). The integrin alpha(v)beta(3) is also essential for EC survival; inhibition of alpha(v)beta(3) ligation promotes apoptosis. Herein we demonstrate that under basal conditions, SK-1, alpha(v)beta(3), and CD31 exist as a heterotrimeric complex. Under conditions that affect EC survival such as loss of contact with the extracellular matrix or growth factor activation, more of this heterotrimeric complex forms. Overexpression studies demonstrate a requirement for SK-1 phosphorylation at serine 225 for increased heterotrimeric complex formation, activation of alpha(v)beta(3), and EC survival signals, including Bcl-X and nuclear factor-kappaB pathways. Moreover, beta(3) integrin depletion confirmed the requirement for this heterotrimeric complex in SK-1-mediated EC survival. Thus, with alpha(v)beta(3) integrin being identifiable primarily on angiogenic ECs and SK-1 being highly expressed in tumors, targeting SK-1 may affect multiple survival pathways, and its inhibition may be highly efficacious in controlling pathological EC survival.


Subject(s)
Cell Survival/physiology , Endothelial Cells/physiology , Integrin alphaVbeta3/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Apoptosis/physiology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Cells, Cultured , Endothelial Cells/cytology , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/metabolism , Humans , Integrin alphaVbeta3/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
11.
Blood ; 113(9): 2108-17, 2009 Feb 26.
Article in English | MEDLINE | ID: mdl-19109558

ABSTRACT

Circulating endothelial progenitor cells (EPCs) are incorporated into foci of neovascularization where they undergo differentiation to mature endothelial cells (ECs). We show here that the enzyme sphingosine kinase-1 (SK-1) regulates the rate and direction of EPC differentiation without effect on the hematopoietic compartment. EPCs have high levels of SK-1 activity, which diminishes with differentiation and is, at least partially, responsible for maintaining their EPC phenotype. EPCs from SK-1 knockout mice form more adherent EC units and acquire a mature EC phenotype more rapidly. Conversely, EPCs from mice overexpressing SK-1 in the EC compartment are retarded in their differentiation. Exogenous regulation of SK-1 levels in normal EPCs, by genetic and pharmacologic means, including the immunomodulating drug FTY720, recapitulates these effects on EC differentiation. SK-1 knockout mice have higher levels of circulating EPCs, an exaggerated response to erythropoietin-induced EPC mobilization, and, in a mouse model of kidney ischemia reperfusion injury, exhibit a recovery similar to that of ischemic mice administered exogenous EPCs. Thus, SK-1 is a critical player in EPC differentiation into EC pointing to the potential utility of SK-1 modifying agents in the specific manipulation of endothelial development and repair.


Subject(s)
Cell Differentiation/genetics , Endothelial Cells/physiology , Phosphotransferases (Alcohol Group Acceptor)/physiology , Stem Cells/physiology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Cell Proliferation , Cells, Cultured , Colony-Forming Units Assay , Endothelial Cells/metabolism , Mice , Mice, Knockout , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proprotein Convertases/physiology , Serine Endopeptidases/physiology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...