Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Eur J Nutr ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896126

ABSTRACT

INTRODUCTION: Muscle mass is vital for physical activity and fundamental physiological processes supporting long-term health. While aging is inevitable, certain modifiable factors positively influence muscle preservation and overall well-being. However, the relationship between the consumption of ultra-processed foods (UPF) and muscle mass is not yet clear. METHODS: This study included 7,173 men and nonpregnant women aged 20-59 years with valid 24-hour dietary recalls and accessible whole-body dual-energy x-ray absorptiometry (DXA) scans from NHANES 2011-2018. UPFs were identified through the NOVA classification system, and the percentage of energy derived from UPF consumption was evaluated in quintiles. Muscle mass measures were derived from DXA scans and quantified by the total and regional muscle mass index (MMI, kg/m²) and appendicular muscle mass index (AMMI, kg/m²). Multivariable-adjusted generalized linear regression models were applied to investigate the association between consumption of UPFs and muscle mass measures overall and by sociodemographic subgroups. RESULTS: The multivariable-adjusted differences of total MMI from the lowest to highest quintile of UPF consumption were 0 (reference), -0.03 (95% CI, -0.13, 0.07), -0.13 (95%CI, -0.24, -0.04), -0.12 (95% CI, -0.23, -0.01), and - 0.17 (95% CI, -0.27, -0.08) (P for trend < 0.001). Subtotal MMI followed a similar magnitude of associational pattern as total MMI. For trunk MMI, corresponding values from the lowest to highest quintiles of UPF consumption were 0 (reference), -0.02 (95% CI, -0.07, 0.02), -0.05 (95%CI, -0.11, 0.00), -0.07 (95% CI, -0.13, -0.01), and - 0.07 (95% CI, -0.12, -0.01). For AMMI, corresponding values from the lowest to highest quintiles of UPF consumption were 0 (reference), -0.004 (95% CI, -0.07, 0.06), -0.08 (95%CI, -0.14, -0.02), -0.05 (95% CI, -0.11, 0.02), and - 0.10 (95% CI, -0.16, -0.04) (All P for trend < 0.001). While most subgroups maintained similar overall patterns, heterogeneous findings were also observed. For example, the multivariable-adjusted differences in total MMI between the lowest and highest quantile of UPF consumption were - 0.19 (95% CI, -0.32, -0.06) for non-Hispanic Whites, 0.18 (95% CI, 0.01, 0.36) for non-Hispanic Blacks, -0.25 (95%CI, -0.45, -0.04) for Hispanics, -0.25 (95% CI, -0.51, 0.05) for non-Hispanic Asians and - 0.32 (95% CI, -0.75, 0.12) for others (P for interaction < 0.001). CONCLUSION: Higher consumption of UPFs was significantly associated with lower values of total and regional muscle mass. Specifically, comparing the highest quantile of UPF consumption to the lowest, total MMI decreased by 0.93%, trunk MMI decreased by 0.76%, and AMMI decreased by 1.25%. The differences in associational patterns between UPF consumption and muscle mass across sociodemographic subgroups require further investigation.

2.
Sci Total Environ ; 940: 173663, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38823714

ABSTRACT

In a mixed forest, certain plants can release allelochemicals that exert allelopathic effects on neighboring plants, thereby facilitating interspecific coexistence of two species. Previous studies have demonstrated that allelochemicals released from Ficus carica Linn. roots in mixed forest of F. carica and Taxus cuspidata Sieb. et Zucc. has phase characteristics over time, which can improve the soil physicochemical properties, enzyme activity and microbial diversity, thus promoting the growth of T. cuspidata. Based on the irrigation of exogenous allelochemicals, changes in soil fertility (soil physical and chemical properties, soil enzyme activity and soil microelement content) were observed in response to variations in allelochemicals during five phases of irrigation: initial disturbance phase (0-2 d), physiological compensation phase (2-8 d), screening phase (8-16 d), restore phase (16-32 d) and maturity phase (32-64 d), which was consistent with the response of soil microorganisms. The allelopathic response of growth physiological indexes of T. cuspidata, however, exhibited a slight lag behind the soil fertility, with distinct phase characteristics becoming evident on the 4th day following irrigation of allelochemicals. The findings demonstrated that the allelochemicals released by the root of F. carica induced a synergistic effect on soil fertility and microorganisms, thereby facilitating the growth of T. cuspidata. This study provides a comprehensive elucidation of the phased dynamic response-based allelopathic mechanism employed by F. carica to enhance the growth of T. cuspidata, thus establishing a theoretical basis for optimizing forest cultivation through allelopathic pathways.


Subject(s)
Ficus , Pheromones , Plant Roots , Taxus , Taxus/physiology , Allelopathy , Soil/chemistry , Soil Microbiology , Plant Exudates
3.
Front Mol Biosci ; 11: 1332090, 2024.
Article in English | MEDLINE | ID: mdl-38516185

ABSTRACT

Background: Mycophenolate mofetil (MMF), the morpholinoethyl ester of mycophenolic acid, is widely used for maintenance immunosuppression in transplantation. The gastrointestinal toxicity of MMF has been widely uncovered. However, the comprehensive metabolic analysis of MMF-induced toxicity is lacking. This study is aimed to ascertain the metabolic changes after MMF administration in mice. Methods: A total of 700 mg MMF was dissolved in 7 mL dimethyl sulfoxide (DMSO), and then 0.5 mL of mixture was diluted with 4.5 mL of saline (100 mg/kg). Mice in the treatment group (n = 9) were given MMF (0.1 mL/10 g) each day via intraperitoneal injection lasting for 2 weeks, while those in the control group (n = 9) received the same amount of blank solvent (DMSO: saline = 1:9). Gas chromatography-mass spectrometry was utilized to identify the metabolic profiling in serum samples and multiple organ tissues of mice. The potential metabolites were identified using orthogonal partial least squares discrimination analysis. Meanwhile, we used the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (http://www.kegg.jp) to depict the metabolic pathways. The percentages of lymphocytes in spleens were assessed by multiparameter flow cytometry analysis. Results: Compared to the control group, we observed that MMF treatment induced differential expression of metabolites in the intestine, hippocampus, lung, liver, kidney, heart, serum, and cortex tissues. Subsequently, we demonstrated that multiple amino acids metabolism and fatty acids biosynthesis were disrupted following MMF treatment. Additionally, MMF challenge dramatically increased CD4+ T cell percentages but had no significant influences on other types of lymphocytes. Conclusion: MMF can affect the metabolism in various organs and serum in mice. These data may provide preliminary judgement for MMF-induced toxicity and understand the metabolic mechanism of MMF more comprehensively.

4.
J Agric Food Chem ; 72(12): 6155-6166, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498691

ABSTRACT

The migration and transformation of allelochemicals are important topics in the exploration of allelopathy. Current research on the migration of allelochemicals mostly uses soil column and thin layer methods and verifies it by sowing plant seeds. However, traditional methods inevitably ignore the flux caused by the movement of allelochemicals carried by water. In fact, the flux determines the amount of allelochemicals that directly affect plants. In this work, a method of microdialysis combined with a soil column and UPLC-MS/MS to detect the flux of allelochemicals was developed for the first time and successfully applied to the detection of five taxane allelochemicals in soil. Meanwhile, by adding taxane allelochemicals to the soil and detecting their transformation products using UPLC-MS/MS, the half-life of taxane in the soil was determined, and the transformation pathway of taxane allelochemicals in the soil was further speculated.


Subject(s)
Pheromones , Soil , Pheromones/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Plants/metabolism
5.
Pharm Biol ; 62(1): 233-249, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38393642

ABSTRACT

CONTEXT: Podophyllotoxin (PPT) derivatives, used in cancer therapy, require development toward enhanced efficacy and reduced toxicity. OBJECTIVE: This study synthesizes PPT derivatives to assess their anticancer activities. MATERIALS AND METHODS: Compounds E1-E16 antiproliferative activity was tested against four human cancer cell lines (H446, MCF-7, HeLa, A549) and two normal cell lines (L02, BEAS-2B) using the CCK-8 assay. The effects of compound E5 on A549 cell growth were evaluated through molecular docking, in vitro assays (flow cytometry, wound healing, Transwell, colony formation, Western blot), and in vivo tests in female BALB/c nude mice treated with E5 (2 and 4 mg/kg). E5 (4 mg/kg) significantly reduced xenograft tumor growth compared to the DMSO control group. RESULTS: Among the 16 PPT derivatives tested for cytotoxicity, E5 exhibited potent effects against A549 cells (IC50: 0.35 ± 0.13 µM) and exceeded the reference drugs PPT and etoposide to inhibit the growth of xenograft tumours. E5-induced cell cycle arrest in the S and G2/M phases accelerated tubulin depolymerization and triggered apoptosis and mitochondrial depolarization while regulating the expression of apoptosis-related proteins and effectively inhibited cell migration and invasion, suggesting a potential to limit metastasis. Molecular docking showed binding of E5 to tubulin at the colchicine site and to Akt, with a consequent down-regulation of PI3K/Akt pathway proteins. DISCUSSION AND CONCLUSIONS: This research lays the groundwork for advancing cancer treatment through developing and using PPT derivatives. The encouraging results associated with E5 call for extended research and clinical validation, leading to novel and more effective cancer therapies.


Subject(s)
Antineoplastic Agents , Podophyllotoxin , Mice , Animals , Humans , Female , Podophyllotoxin/pharmacology , Podophyllotoxin/chemistry , Tubulin/metabolism , Tubulin/pharmacology , Molecular Docking Simulation , Mice, Nude , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Cell Line, Tumor , Apoptosis , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry
6.
Mol Neurobiol ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368289

ABSTRACT

Tetrahydrocurcumin (THC) and microglial polarization play crucial roles in neuroprotection during traumatic brain injury (TBI). However, whether THC regulates microglial polarization in TBI is unknown. Thus, we intended to analyze the functions and mechanism of THC in nerve injury after TBI via the regulation of microglial polarization. A TBI rat model was established, and modified neurological function score (mNSS), brain water content, Nissl staining, and Fluoro-Jade B (FJB) staining were used to evaluate neurological function. The expression of the M1-linked markers CD16 and CD86, as well as the M2-associated markers CD206 and YM-1, was analyzed via qRT-PCR, western blotting, and immunofluorescence. The levels of inflammatory cytokines were assessed via ELISA. Primary microglia were isolated from the brain and treated with lipopolysaccharide (LPS) to induce injury. TUNEL staining was used to measure primary microglial apoptosis. The expression of GSK3ß, PTEN, and PI3K/Akt pathway proteins was detected via western blotting. TBI induced nerve injury, while THC improved neurological function recovery after TBI. Further analysis indicated that THC enhanced M2 microglial polarization and attenuated the inflammatory reaction mediated by microglia both in vitro and in vivo. Moreover, we found that THC promoted the M2 microglial phenotype through upregulating GSK3ß expression. Additionally, we proved that GSK3ß activated the PI3K/Akt pathway by phosphorylating PTEN. In conclusion, we demonstrated that THC protected against nerve injury after TBI via microglial polarization via the GSK3B/PTEN/PI3K/Akt signaling axis, suggesting the potential of THC for TBI treatment by promoting microglial M2 polarization.

7.
Discov Oncol ; 15(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165493

ABSTRACT

BACKGROUND: People with autoimmune diseases are prone to cancer, and there is a close relationship between rheumatoid arthritis (RA) and acute myeloid leukemia (AML). The bone marrow (BM) is affected throughout the course of RA, with a variety of hematologic involvement. Hopes are pinned on rheumatoid arthritis research to obtain BM biomarkers for AML. METHODS: Synovial transcriptome sequencing data for RA and osteoarthritis (OA), and single-cell sequencing data for RA and controls were obtained from the GEO database.Bone marrow sequencing data for AML patients and normal subjects were obtained from the UCSC Xena database. The final immune heterogeneity characteristics of RA were determined through ssGSEA analysis, gene differential expression analysis, fuzzy c-means clustering algorithm, and XGboost algorithm. Random Ferns classifiers (RFs) are used to identify new bone marrow markers for AML. RESULTS: SELL, PTPRC, IL7R, CCR7, and KLRB1 were able to distinguish leukemia cells from normal cells well, with AUC values higher than 0.970. CONCLUSION: Genes characterizing the immune heterogeneity of RA are associated with AML, and KLRBA may be a potential target for AML treatment.

8.
Adv Sci (Weinh) ; 11(7): e2307648, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38083975

ABSTRACT

T-2 toxin causes renal dysfunction with proteinuria and glomerular podocyte damage. This work explores the role of metabolic disorder/reprogramming-mediated epigenetic modification in the progression of T-2 toxin-stimulated podocyte injury. A metabolomics experiment is performed to assess metabolic responses to T-2 toxin infection in human podocytes. Roles of protein O-linked-N-acetylglucosaminylation (O-GlcNAcylation) in regulating T-2 toxin-stimulated podocyte injury in mouse and podocyte models are assessed. O-GlcNAc target proteins are recognized by mass spectrometry and co-immunoprecipitation experiments. Moreover, histone acetylation and autophagy levels are measured. T-2 toxin infection upregulates glucose transporter type 1 (GLUT1) expression and enhances hexosamine biosynthetic pathway in glomerular podocytes, resulting in a significant increase in ß-arrestin-1 O-GlcNAcylation. Decreasing ß-arrestin-1 or O-GlcNAc transferase (OGT) effectively prevents T-2 toxin-induced renal dysfunction and podocyte injury. Mechanistically, O-GlcNAcylation of ß-arrestin-1 stabilizes ß-arrestin-1 to activate the mammalian target of rapamycin (mTOR) pathway as well as to inhibit autophagy during podocyte injury by promoting H4K16 acetylation. To sum up, OGT-mediated ß-arrestin-1 O-GlcNAcylation is a vital regulator in the development of T-2 toxin-stimulated podocyte injury via activating the mTOR pathway to suppress autophagy. Targeting ß-arrestin-1 or OGT can be a potential therapy for T-2 toxin infection-associated glomerular injury, especially podocyte injury.


Subject(s)
Kidney Diseases , Podocytes , T-2 Toxin , Mice , Humans , Animals , Acetylation , Histones/metabolism , Podocytes/metabolism , beta-Arrestin 1/metabolism , T-2 Toxin/metabolism , TOR Serine-Threonine Kinases/metabolism , Kidney Diseases/metabolism , Mammals/metabolism
9.
Adv Biol (Weinh) ; 8(2): e2300413, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37880935

ABSTRACT

Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.


Subject(s)
Metabolomics , Sleep Deprivation , Mice , Animals , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Sleep , Metabolome , Obesity
10.
Infect Dis Poverty ; 12(1): 110, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38037092

ABSTRACT

The World Health Organization (WHO) prioritizes pneumococcal disease as a vaccine-preventable disease and recommends the inclusion of pneumococcal conjugate vaccines (PCV) in national immunization programs worldwide. However, PCV is not included in the National Immunization Program in China and has low vaccination coverage due to its high cost. To address this, Weifang City implemented an innovative strategy for a 13-valent PCV (PCV13) on June 1, 2021. This strategy aimed to provide one dose of PCV13 free of charge for children aged 6 months to 2 years in registered households and to adopt a commercial insurance model with one dose of PCV13 free of charge in 2023 for children over 2 years old. The Health Commission of Weifang and other departments conducted a comprehensive investigation and considered various factors, such as vaccine effectiveness, safety, accessibility, vaccine price, and immunization schedules, for eligible children (under 5 years old). Stakeholder opinions were also solicited before implementing the policy. The Commission negotiated with various vaccine manufacturers to maximize its negotiating power and reduce vaccine prices. The implementation plan was introduced under the Healthy Weifang Strategy. Following the implementation of this strategy, the full course of vaccination coverage increased significantly from 0.67 to 6.59%. However, vaccination coverage is still lower than that in developed countries. Weifang's PCV13 vaccination innovative strategy is the first of its kind in Chinese mainland and is an active pilot of non-immunization program vaccination strategies. To further promote PCV13 vaccination, Weifang City should continue to implement this strategy and explore appropriate financing channels. Regions with higher levels of economic development can innovate the implementation of vaccine programs, broaden financing channels, improve accessibility to vaccination services, and advocate for more localities to incorporate PCV13 into locally expanded immunization programs or people-benefiting projects. A monitoring and evaluation system should also be established to evaluate implementation effects.


Subject(s)
Pneumococcal Infections , Child , Humans , Infant , Child, Preschool , Cost-Benefit Analysis , Pneumococcal Infections/prevention & control , Vaccination , Pneumococcal Vaccines , Immunization Programs , Vaccines, Conjugate , China
11.
Heliyon ; 9(11): e21974, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034814

ABSTRACT

Raman-active modes of human skin and pork belly have been studied systematically by a near-infrared Raman spectrometer with an exciting laser of 1064 nm. The main components and quantitative determination of pork belly are extracted by fitting the Raman spectra with the normalized Raman spectra of biochemical reagents such as collagen, elastin, triolein, fibronectin, fibrin, and hyaluronic acid. It demonstrates that the main components and quantity are various at different locations of pork belly, while the main components of human skin are similar to those of pig skin. In a further step, the evolution of the heating time-dependent Raman modes of isolated pig skin has been investigated for the mechanism of burnt skin. One can find that the spatial structure and main components of skin have an excellent thermal stability in the temperature range from -120 to 200 ∘C, which is confirmed by the temperature dependent Raman spectra of isolated pig skin, microporous acellular dermal matrix (MADM) as well as their corresponding biochemical reagents (collagen, elastin, triolein, etc.). These results help understand the mechanism of the living skin burnt by fire or hot water, and supplies an alternative technology for surgeons to diagnose the depth of a burn injury in time.

12.
J Cell Mol Med ; 27(24): 4069-4079, 2023 12.
Article in English | MEDLINE | ID: mdl-37818853

ABSTRACT

Moyamoya disease (MMD) is a rare disorder of the cerebrovascular system. It is a steno-occlusive disease that involves angiogenesis and blood-brain barrier (BBB) disruption. Bradykinin (BK), its metabolite des-Arg9-BK, and receptor (B1R) affect angiogenesis and BBB integrity. In this study, we aimed to investigate the changes in BK, B1R and des-Arg9-BK levels in the serum and brain tissues of patients with MMD and explore the underlying mechanism of these markers in MMD. We obtained the serum samples and superficial temporal artery (STA) tissue of patients with MMD from the Department of Neurosurgery of the Jining First People's Hospital. First, we measured BK, des-Arg9-BK and B1R levels in the serum of patients by means of ELISA. Next, we performed immunofluorescence to determine B1R expression in STA tissues. Finally, we determined the underlying mechanism through Western blot, angiogenesis assay, immunofluorescence, transendothelial electrical resistance and transcytosis assays. Our results demonstrated a significant increase in the BK, des-Arg9-BK and B1R levels in the serum of patients with MMD compared to healthy controls. Furthermore, an increase in the B1R expression level was observed in the STA tissues of patients with MMD. BK and des-Arg9-BK could promote the migratory and proliferative abilities of bEnd.3 cells and inhibited the formation of bEnd.3 cell tubes. In vitro BBB model showed that BK and des-Arg9-BK could reduce claudin-5, ZO-1 and occluding expression and BBB disruption. To the best of our knowledge, our results show an increase in BK and B1R levels in the serum and STA tissues of patients with MMD. BK and Des-Arg9-BK could inhibit angiogenesis, promote migratory and proliferative capacities of cells, and disrupt BBB integrity. Therefore, regulating BK, des-Arg9-BK and B1R levels in the serum and the brain could be potential strategies for treating patients with MMD.


Subject(s)
Moyamoya Disease , Receptors, Bradykinin , Animals , Humans , Mice , Receptors, Bradykinin/metabolism , Bradykinin/pharmacology , Moyamoya Disease/genetics , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism
13.
J Toxicol ; 2023: 5660481, 2023.
Article in English | MEDLINE | ID: mdl-37575636

ABSTRACT

Objective: It is well known that paclitaxel (PTX)-induced neurotoxicity seriously affects the quality of life of patients and is the main reason for reducing the dose of chemotherapy or even stopping chemotherapy. The current data are limited, and further information is required for practice and verification. The aims of this study were to clarify the molecular mechanism underlying PTX-induced neurotoxicity by combining in vivo and in vitro metabolomics studies and provide new targets for the prevention and treatment of PTX-induced neurotoxicity. Methods: In the in vivo study, a PTX-induced neurotoxicity mouse model was established by intraperitoneal injection of PTX (6 mg/kg every three days) for two consecutive weeks. After verification by water maze tests and HE staining of pathological sections, hippocampal metabolites were measured and the differential metabolites and related metabolic pathways were identified by multivariate statistical analysis. In the in vitro study, we investigated the effects of PTX on mouse hippocampal neuron cells, assessing the concentration and time of administration by MTT assays. After modeling, the relevant metabolites in the TCA cycle were quantified by targeted metabolomics using stable isotope labeling. Finally, the key enzymes of the TCA cycle in tissues and cells were verified by RT-PCR. Results: Administration of PTX to model mice resulted in neurological damage, shown by both water-maze tests and hippocampal tissue sections. Twenty-four metabolites and five associated metabolic pathways were found to differ significantly between the hippocampal tissues of the model and control groups. These included metabolites and pathways related to the TCA cycle and pyruvate metabolism. Metabolomics analysis using stable isotope labeling showed significant changes in metabolites associated with the TCA cycle compared with the control group (P < 0.05). Finally, RT-PCR verified that the expression of key enzymes in the TCA cycle was changed to different degrees in both hippocampal tissues and cells. Conclusion: Our results showed that PTX neurotoxicity in hippocampal tissue and neuron cells was associated with inhibition of the TCA cycle. This inhibition leads to brain insufficiency and impaired metabolism, resulting in various neurotoxic symptoms.

14.
Arch Biochem Biophys ; 742: 109637, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37182800

ABSTRACT

Although it is widely reported that Pokemon acts as an oncogene in the pathogenesis of multiple cancers, but its role and detailed molecular mechanisms in regulating non-small cell lung cancer (NSCLC) progression have not been fully delineated. Here, by performing Real-Time qPCR analysis, we verified that Pokemon was high-expressed in NSCLC tissues and cells, compared to the corresponding normal lung tissues and epithelial cells. Then, the small interfering RNA (siRNA) for Pokemon was transfected into the NSCLC cells to verify its biological functions, and our results suggested that silencing of Pokemon suppressed the malignant phenotypes, including cell viability, mitosis, colony formation, epithelial-mesenchymal transition (EMT), mobility and cancer stem cell (CSC) properties in NSCLC cells. Mechanistically, we confirmed that knockdown of Pokemon decreased the expression levels of phosphorylated Akt (p-Akt), phosphorylated GSK-3ß (p-GSK-3ß) and Snail to inactivate the oncogenic Akt/GSK-3ß/Snail signal pathway, and deletion of Snail also had similar effects to hamper the development of NSCLC. Next, our rescuing experiments validated that Pokemon ablation-induced suppressing effects on NSCLC cell malignancy were all abrogated by overexpressing Snail. Finally, the in vivo experiments confirmed that silencing of Pokemon downregulated Snail to hamper tumorigenesis of NSCLC cells in xenograft tumor-bearing mice models. Taken together, we firstly uncovered the underlying mechanisms by which the Pokemon/Akt/GSK-3ß/Snail signal pathway contributed to the development of NSCLC, and this signal pathway could be potentially used as therapeutic targets for the development of personalized anti-NSCLC drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Video Games , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Glycogen Synthase Kinase 3 beta , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/pharmacology , Snail Family Transcription Factors/metabolism
15.
Front Immunol ; 14: 1109381, 2023.
Article in English | MEDLINE | ID: mdl-36845116

ABSTRACT

Introduction: Despite the protection and management of skin has been paid more and more attention, effective countermeasures are still lacking for patients suffering from UV or chemotherapy with damaged skin. Recently, gene therapy by small interfering RNA (siRNA) has emerged as a new therapeutic strategy for skin lesions. However, siRNA therapy has not been applied to skin therapy due to lack of effective delivery vector. Methods: Here, we develop a synthetic biology strategy that integrates the exosomes with artificial genetic circuits to reprogram the adipose mesenchymal stem cell to express and assemble siRNAs into exosomes and facilitate in vivo delivery siRNAs for therapy of mouse models of skin lesions. Results: Particularly, siRNA enriched exosomes (si-ADMSC-EXOs) could be directly taken up by the skin cells to inhibit the expression of skin injury related genes. When mice with skin lesions were smeared with si-ADMSC-EXOs, the repair of lesioned skin became faster and the expression of inflammatory cytokines were decreased. Discussion: Overall, this study establishes a feasible therapeutic strategy for skin injury, which may offer an alternative to conventional biological therapies requiring two or more independent compounds.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Mice , Animals , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , NF-kappa B/metabolism , Exosomes/genetics , Exosomes/metabolism , Skin/injuries , Mesenchymal Stem Cells/metabolism
16.
Radiat Prot Dosimetry ; 199(3): ncac269 216 229-234, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36562627

ABSTRACT

On the basis of the basic principle of electromagnetic dosimetry, the paper studies the electromagnetic exposure of a passenger's body to a compound electromagnetic field caused by the combined action of DC and AC bus currents of a pure electric vehicle inverter. By building an electromagnetic model of a pure electric vehicle body, adult human body and inverter, the finite element method is used to calculate the magnetic induction intensity(|B|), induced electric field intensity(|E|) and induced current density(|J|) of the compound electromagnetic field to the human trunk and central nervous system in the driver and front seat passenger. The numerical results are compared with the exposure limits defined by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The fields are well below the safe exposure limits defined by ICNIRP.


Subject(s)
Electromagnetic Fields , Radiation Protection , Adult , Humans , Human Body , Electricity , Radiometry
17.
Neurotox Res ; 40(6): 2016-2026, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36550222

ABSTRACT

Acrylamide (AM) is a potent neurotoxin and carcinogen that is mainly formed by the Maillard reaction of asparagine with starch at high temperatures. However, the toxicity mechanism underlying AM has not been investigated from a proteomic perspective, and the regulation of protein expression by AM remains poorly understood. This research was the first to utilize proteomics to explore the mechanism of AM exposure-induced neuroinflammation. Target proteins were obtained by differential protein analysis, functional annotation, and enrichment analysis of proteomics. Then, molecular biology methods, including Western blot, qPCR, and immunofluorescence, were used to verify the results and explore possible mechanisms. We identified 100 key differential metabolites by proteomic analysis, which was involved in the occurrence of various biological functions. Among them, the KEGG pathway enrichment analysis showed that the differential proteins were enriched in the P53 pathway, sulfur metabolism pathway, and ferroptosis. Finally, the differential target protein we locked was LARP7. Molecular biological verification found that AM exposure inhibited the expression of LARP7 and induced the burst of inflammation, while SRT1720 agonist treatment showed no effect on LARP7, but significant changes in inflammatory factors and NF-κB. Taken together, these findings suggested that AM may activate NF-κB to induce neuroinflammation by inhibiting the LARP7-SIRT1 pathway. And our study provided a direction for AM-induced neurotoxicity through proteomics and multiple biological analysis methods.


Subject(s)
NF-kappa B , Sirtuin 1 , Humans , NF-kappa B/metabolism , Sirtuin 1/metabolism , Neuroinflammatory Diseases , Microglia , Acrylamide/toxicity , Acrylamide/metabolism , Proteomics , Ribonucleoproteins/metabolism , Ribonucleoproteins/pharmacology
18.
Drug Des Devel Ther ; 16: 3877-3891, 2022.
Article in English | MEDLINE | ID: mdl-36388083

ABSTRACT

Purpose: We designed this study to investigate the potential correlations between gut microbiota compositions and hepatic metabolomic disorders in mice with methotrexate (MTX)-induced hepatoxicity. Methods: We used MTX to induce hepatoxicity in healthy Kunming mice, and we determined plasma ALT and AST levels and assessed the liver tissue histopathology. We applied an integrated gas chromatography-mass spectrometry (GC-MS) and 16S ribosomal RNA (rRNA) gene sequencing approach to evaluate the effects of MTX on the gut microbiota and hepatic metabolic profiles of mice. We uncovered correlations between the gut microbiota and hepatic metabolomic profiles by calculating the Spearman correlation coefficient. Results: MTX caused ALT and AST level elevations and hepatoxicity in our mouse model. MTX disrupted amino acid metabolic pathways (including biosyntheses of valine, leucine, and isoleucine; and arginine; and, metabolism of alanine, aspartate, and glutamate; histidine; beta-alanine; and glycine, serine, and threonine); biosyntheses of aminoacyl-tRNA; and pantothenate, and CoA; and, metabolic pathways of energy, glutathione, and porphyrin; and chlorophyll. In addition, MTX increased the abundances of Staphylococcus, Enterococcus, Collinsella, Streptococcus, and Aerococcus, but decreased the amounts of Lactobacillus, Ruminococcus, norank_f_Muribaculaceae, unclassified_f_Lachnospiraceae, norank_f_Lachnospiraceae, A2, Eubacterium_xylanophilum_group, Phascolarctobacterium, Bifidobacterium, and Faecalibaculum. Our correlation analyses showed that different flora abundance changes including those of Phascolarctobacterium, Faecalibaculum, norank_f_Muribaculaceae, Streptococcus, Enterococcus, Staphylococcus, and Collinsella were associated with liver injury. Conclusion: We present evidence supporting the notion that MTX causes hepatoxicity by altering the gut microbiota and hepatic metabolite profiles, our findings provide new venues for the management of MTX-induced hepatoxicity.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases , Microbiota , Mice , Animals , Methotrexate/adverse effects , Metabolome , Metabolomics/methods , Firmicutes
19.
Bioorg Chem ; 126: 105906, 2022 09.
Article in English | MEDLINE | ID: mdl-35661529

ABSTRACT

In this study, a series of potential candidate molecules with excellent antitumor activity targeting tubulin and PTEN/PI3K/Akt signaling pathway was synthesized by modifying the molecule structure of podophyllotoxin (PPT) at the C-4 position via a structure-guided drug design approach. MTT assay results indicated that compound 12c had stronger anti-proliferative activities against HGC-27, MCF-7 and H460 cell lines than etoposide (VP-16), especially for HGC-27 (12c: IC50 = 0.89 ± 0.023 µM; PPT: IC50 = 6.54 ± 0.69 µM, VP-16: IC50 = 2.66 ± 0.28 µM) with lower affect in healthy human cells (293 T and GES-1). Further pharmacological analysis exhibited that 12c could bind the tubulin at the colchicine site and disrupt the dynamic equilibrium of microtubules. Moreover, 12c also suppressed the expressions/activities of matrix metalloprotease (MMP)-2, vimentin and up-regulation E-cadherin suggesting that 12c could block the epithelial-mesenchymal transition (EMT). The increased cell survival and invasion/migration were associated with the inactivation of PTEN/PI3K/Akt, 12c could regulate this pathway and cascade influence on the mitochondrial pathway, eventually, leading to the cell apoptosis. Thus, 12c may have the potential to become a candidate molecule in gastric cancer clinical treatment.


Subject(s)
Antineoplastic Agents , Podophyllotoxin , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , Cell Proliferation , Etoposide/pharmacology , Humans , Phosphatidylinositol 3-Kinases/metabolism , Podophyllotoxin/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Tubulin/metabolism
20.
Biosci Trends ; 16(2): 158-162, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35444073

ABSTRACT

Pseudomonas aeruginosa is a frequent causative agent of post-pneumonectomy empyema-associated broncho-pleural fistula (BPF) and it has a high mortality rate. In recent years, the therapeutic potential of bacteriophage therapy has recognized anew as antimicrobial resistance increases globally. Studies are increasingly reporting the efficacy and safety of bacteriophage therapy for the treatment of multidrug-resistant bacterial infections. However, the clinical efficacy of bacteriophage therapy in empyema has seldom been studied. The current study reports the authors' experience with bacteriophage therapy for a 68-year-old Chinese man who suffered BPF-associated empyema and pneumonia caused by carbapenem-resistant P. aeruginosa. A personalized lytic pathogen-specific two-phage preparation was administered to the patient continuously for 24 days in combination with conventional antibiotics. The treatment was well-tolerated, resulting in clearance of the pathogen and improvement of the clinical outcome. This experience shows that a combined conventional antibiotic treatment with bacteriophage therapy may be effective at alleviating a multidrug-resistant bacterial infection in BPF-associated empyema.


Subject(s)
Empyema , Phage Therapy , Pseudomonas Infections , Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Humans , Male , Pseudomonas Infections/complications , Pseudomonas Infections/microbiology , Pseudomonas Infections/therapy , Pseudomonas aeruginosa
SELECTION OF CITATIONS
SEARCH DETAIL
...