Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 783
Filter
1.
Food Chem ; 452: 139569, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38744131

ABSTRACT

Given the potential dangers of thiram to food safety, constructing a facile sensor is significantly critical. Herein, we presented a colorimetric sensor based on glutathione­iron hybrid (GSH-Fe) nanozyme for specific and stable detection of thiram. The GSH-Fe nanozyme exhibits good peroxidase-mimicking activity with comparable Michaelis constant (Km = 0.551 mM) to the natural enzyme. Thiram pesticides can specifically limit the catalytic activity of GSH-Fe nanozyme via surface passivation, causing the change of colorimetric signal. It is worth mentioning that the platform was used to prepare a portable hydrogel kit for rapid qualitative monitoring of thiram. Coupling with an image-processing algorithm, the colorimetric image of the hydrogel reactor is converted into the data information for accurate quantification of thiram with a detection limit of 0.3 µg mL-1. The sensing system has good selectivity and high stability, with recovery rates in fruit juice samples ranging from 92.4% to 106.9%.

2.
Arch Psychiatr Nurs ; 49: 118-125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38734447

ABSTRACT

BACKGROUND: In early 2020, Chinese children started to demonstrate severe depression and post-traumatic stress disorder symptoms (PTSS) caused by lockdown and self-isolation (measures taken at the beginning of the COVID-19 pandemic). OBJECTIVES: Concerning the significant impact of the pandemic on children's physical and mental development, the study aimed to explore children's depression and PTSS during the COVID-19 pandemic and the protective effects of family resilience on the trajectories. METHODS: 883 children participated and completed three waves of online follow-up questionnaires. The latent growth mixture modeling (LGMM) analysis was used to explore the trajectories of children's depression and PTSS based on the individual approach. RESULTS: Two types of depression trajectories were identified and defined as the resilient group (83.01 %) and the recovery group (16.99 %); Two types of PTSS trajectories were identified and defined as the resilient group (71.12 %) and the recovery group (28.88 %); Two types of the joint trajectories of depression and PTSS were identified and defined as the resilient group (83.47 %) and the chronic group (16.53 %). The results indicated that maintaining a positive outlook (a dimension of family resilience) was the potential predictor of PTSS trajectories. CONCLUSION: The trajectories of depression and PTSS among Chinese children during the COVID-19 pandemic were heterogeneous, and there were similar evolving subtypes. Family resilience could be a critical protective factor for children and families.


Subject(s)
COVID-19 , Depression , Resilience, Psychological , Stress Disorders, Post-Traumatic , Child , Female , Humans , Male , China/epidemiology , COVID-19/psychology , Depression/psychology , Depression/epidemiology , East Asian People , Pandemics , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/psychology , Surveys and Questionnaires
3.
Int J Biol Macromol ; 270(Pt 2): 132226, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729469

ABSTRACT

A novel natural water-soluble acidic polysaccharide (PWESP-3) was isolated from squash with a molecular mass of 140.519 kDa, which was composed of arabinose (Ara, 35.30 mol%), galactose (Gal, 61.20 mol%), glucose (Glc, 1.80 mol%), and Mannuronic acid (ManA, 1.70 mol%) and contained Araf-(1→, →3)-Araf-(1→, →5)-Araf-(1→, Glcp-(1→, Galp-(1→, →3,5)-Araf-(1→, →2)-Glcp-(1→, →2)-Manp-(1→, →3)-Glcp-(1→, →4)-Galp-(1→, →3)-Galp-(1→, →6)-Galp-(1→, →3,4)-Galp-(1→, →4,6)-Galp-(1→ residues in the backbone. Moreover, the structure of PWESP-3 was identified by NMR spectra. The branch chain was connected to the main chain by the O-3 and O-4 atom of Gal. In addition, the effect of PWESP-3 on STZ-induced type I diabetes mellitus model in MIN6 cells was investigated. The results showed that PWESP-3 can increase the viability and insulin secretion of MIN6 cells and reduce the oxidative stress caused by ROS and NO. Meanwhile, PWESP-3 can also reduce the content of ATP, Ca2+, mitochondrial membrane potential and Caspase-3 activity in MIN6 cells. Furthermore, treatment with PWESP-3 can prevent single or double stranded DNA breaking to form DNA fragments and improve DNA damage in MIN6 cells, thereby avoiding apoptosis. Therefore, the above data highlight that PWESP-3 can improve the function of insulin secretion in STZ-induced MIN6 cells in vitro and can be used as an alternative food supplement to diabetes drugs.

4.
Plant Physiol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696652

ABSTRACT

Pear ring rot, caused by Botryosphaeria dothidea, is the most serious disease of pear (Pyrus spp.) trees. However, the molecular mechanisms underlying pear resistance to B. dothidea remain elusive. Herein, we demonstrated that the pear AuTophagy-related Gene 1a (PbrATG1a) plays a key role in autophagic activity and resistance to B. dothidea. Stable overexpression of PbrATG1a enhanced resistance to B. dothidea in pear calli. Autophagy activity was greater in PbrATG1a overexpressing calli than in WT calli. We used yeast one-hybrid screening to identify a transcription factor, Related to ABI3 and VP1 (Pbr3RAV2), that binds the promoter of PbrATG1a and enhances pear resistance to B. dothidea by regulating autophagic activity. Specifically, overexpression of Pbr3RAV2 enhanced resistance to B. dothidea in pear calli, while transient silencing of Pbr3RAV2 resulted in compromised resistance to B. dothidea in Pyrus betulaefolia. In addition, we identified Transparent Testa Glabra 1 (PbrTTG1), which interacts with Pbr3RAV2. Pathogen infection enhanced the interaction between Pbr3RAV2 and PbrTTG1. The Pbr3RAV2-PbrTTG1 complex increased the binding capacity of Pbr3RAV2 and transcription of PbrATG1a. In addition to providing insights into the molecular mechanisms underlying pear disease resistance, these findings suggest potential genetic targets for enhancing disease resistance in pear.

5.
Nat Commun ; 15(1): 3780, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710714

ABSTRACT

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Subject(s)
Choroidal Neovascularization , Dependovirus , Genetic Therapy , Genetic Vectors , Retinal Pigment Epithelium , Animals , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Genetic Therapy/methods , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , Choroidal Neovascularization/therapy , Choroidal Neovascularization/genetics , Rabbits , Humans , Gene Transfer Techniques , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Disease Models, Animal , Capsid Proteins/genetics , Capsid Proteins/metabolism , Transduction, Genetic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice, Inbred C57BL , Retina/metabolism , Retina/virology , Male , HEK293 Cells
6.
Technol Health Care ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38759050

ABSTRACT

BACKGROUND: Computer-aided tongue and face diagnosis technology can make Traditional Chinese Medicine (TCM) more standardized, objective and quantified. However, many tongue images collected by the instrument may not meet the standard in clinical applications, which affects the subsequent quantitative analysis. The common tongue diagnosis instrument cannot determine whether the patient has fully extended the tongue or collected the face. OBJECTIVE: This paper proposes an image quality control algorithm based on deep learning to verify the eligibility of TCM tongue diagnosis images. METHODS: We firstly gathered enough images and categorized them into five states. Secondly, we preprocessed the training images. Thirdly, we built a ResNet34 model and trained it by the transfer learning method. Finally, we input the test images into the trained model and automatically filter out unqualified images and point out the reasons. RESULTS: Experimental results show that the model's quality control accuracy rate of the test dataset is as high as 97.06%. Our methods have the strong discriminative power of the learned representation. Compared with previous studies, it can guarantee subsequent tongue image processing. CONCLUSIONS: Our methods can guarantee the subsequent quantitative analysis of tongue shape, tongue state, tongue spirit, and facial complexion.

7.
Heliyon ; 10(7): e28686, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571636

ABSTRACT

Background: We report here the clinical and genetic features of KMT5B-related neurodevelopmental disorder caused by a novel heterozygous frameshift variant in KMT5B in a Chinese family. Case presentation: A 7-year-old Chinese boy with mild-to-moderate intellectual disability, significant language impairment, motor disability, and coordination difficulties presented to our hospital because he "could not speak and did not look at others." He was diagnosed with autism spectrum disorder previously owing to developmental delays in cognition, language expression, and understanding. The child also had variable nonspecific features including macrocephaly, wide button-hole space and nasal bridge, low ear, social behavior disorder, and foot deformities. Exome sequencing (ES) revealed that both the proband and his younger brother had inherited a novel heterozygous frameshift variant c.438_439ins[ASD; KT192064.1:1_310] of the KMT5B gene from their father. Bioinformatics analysis showed that the novel mutation affected the structure of the KMT5B pre-SET domain, mainly in the α-helix region. According to the American College of Medical Genetics and Genomics (ACMG) guidelines, this type of variant was eventually determined to be likely pathogenic (PVS1+PM2_P). Conclusions: Our investigation expands the mutation spectrum of KMT5B to help us to better understand KMT5B-related neurodevelopmental disorder.

8.
Nat Prod Res ; : 1-8, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557272

ABSTRACT

A series of glycosyl alkyl/triazol-linked icaritin derivatives have been designed and synthesised. The target glycosyl derivatives were evaluated for their anticancer activity against three human cancer cell lines. The results of preliminary anticancer tests in vitro revealed that mannose derivatives 10a-10c (100 µM) with different aliphatic chain lengths exhibited increased cytotoxicity against HepG2 and SK-OV-3 cells compared with the parent compound icaritin. The data indicated that the kind of glycosyl groups and linkers affected the anticancer potency significantly. The ADME analysis of derivatives 10a-10c was also performed.

9.
ACS Omega ; 9(13): 15311-15319, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585103

ABSTRACT

The primary limitations of the quantitative analysis of thermally labile halogenated compounds by traditional gas chromatography (GC) are the inadequacy of identifying the insufficiently volatile impurity (often with a high boiling point) and the difficulty in obtaining a standard substance with a reliable standardized assay. Taking the 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one (DMDO-Cl, 1) as an example, we reported a triphenylmethanamino-derivatization method to overcome the challenges of the assay determination of such species. During the quantification of 1, the presence of GC-undetectable polymeric impurity 10 poses a critical challenge in assessing the material quality. Moreover, the standard substance of 1 is not available on the market due to its inherent instability during storage and handling, further complicating the quantitative analysis. In this work, a precolumn HPLC-UV derivatization method based on triphenylmethanamino-alkylation was developed to quantitatively analyze 1. The resulting derivative 2 exhibits excellent crystallinity and superior physical and chemical stability and possesses effective chromophores for UV detection. The conversion from analyte 1 to derivative 2 demonstrates desirable reactivity and purity, facilitating quantitative analysis using the external standard method. The chemical derivatization-chromatographic detection method was optimized and validated, demonstrating its high specificity, good linearity, precision, accuracy, and stability. This method offers a valuable alternative to the general quantitative NMR (qNMR) detection technique, which exhibits reduced specificity in the presence of increased levels of impurities in compound 1.

10.
J Control Release ; 369: 556-572, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38580136

ABSTRACT

Vaccines represent one of the most powerful and cost-effective innovations for controlling a wide range of infectious diseases caused by various viruses and bacteria. Unlike mRNA and DNA-based vaccines, subunit vaccines carry no risk of insertional mutagenesis and can be lyophilized for convenient transportation and long-term storage. However, existing adjuvants are often associated with toxic effect and reactogenicity, necessitating expanding the repertoire of adjuvants with better biocompatibility, for instance, designing self-adjuvating polymeric carriers. We herein report a novel subunit vaccine delivery platform constructed via in situ free radical polymerization of C7A (2-(Hexamethyleneimino) ethyl methacrylate) and acrylamide around the surface of individual protein antigens. Using ovalbumin (OVA) as a model antigen, we observed substantial increases in both diameter (∼70 nm) and surface potential (-1.18 mV) following encapsulation, referred to as n(OVA)C7A. C7A's ultra pH sensitivity with a transition pH around 6.9 allows for rapid protonation in acidic environments. This property facilitates crucial processes such as endosomal escape and major histocompatibility complex (MHC)-I-mediated antigen presentation, culminating in the substantial CD8+ T cell activation. Additionally, compared to OVA nanocapsules without the C7A components and native OVA without modifications, we observed heightened B cell activation within the germinal center, along with remarkable increases in serum antibody and cytokine production. It's important to note that mounting evidence suggests that adjuvant effects, particularly its targeted stimulation of type I interferons (IFNs), can contribute to advantageous adaptive immune responses. Beyond its exceptional potency, the nanovaccine also demonstrated robust formation of immune memory and exhibited a favorable biosafety profile. These findings collectively underscore the promising potential of our nanovaccine in the realm of immunotherapy and vaccine development.

11.
Article in English | MEDLINE | ID: mdl-38606479

ABSTRACT

Approximately 20% of colorectal cancer (CRC) patients are first diagnosed with metastatic colorectal cancer (mCRC) because they develop symptoms at an advanced stage. Despite advancements in treatment, patients with metastatic disease still experience inferior survival rates. Our objective is to investigate the association between long noncoding RNAs (lncRNAs) and prognosis and to explore their role in mCRC. In this study, we find that elevated expression of PCAT6 is independently linked to unfavourable survival outcomes in The Cancer Genome Atlas (TCGA) data, and this finding is further confirmed in CRC samples obtained from Fudan University Shanghai Cancer Center. Cell lines and xenograft mouse models are used to examine the impact of PCAT6 on tumor metastasis. Knockdown of PCAT6 is observed to impede the metastatic phenotype of CRC, as evidenced by functional assays, demonstrating the suppression of epithelial-mesenchymal transition (EMT) and stemness. Our findings show the significance of PCAT6 in mCRC and its potential use as a prognostic biomarker.

12.
Int J Med Sci ; 21(5): 965-977, 2024.
Article in English | MEDLINE | ID: mdl-38616996

ABSTRACT

Cardiac hypertrophy is the most prevalent compensatory heart disease that ultimately leads to spontaneous heart failure. Mounting evidence suggests that microRNAs (miRs) and endogenous hydrogen sulfide (H2S) play a crucial role in the regulation of cardiac hypertrophy. In this study, we aimed to investigate whether inhibition of miR-27a could protect against cardiac hypertrophy by modulating H2S signaling. We established a model of cardiac hypertrophy by obtaining hypertrophic tissue from mice subjected to transverse aortic constriction (TAC) and from cells treated with angiotensin-II. Molecular alterations in the myocardium were quantified using quantitative real time PCR (qRT-PCR), Western blotting, and ELISA. Morphological changes were characterized by hematoxylin and eosin (HE) staining and Masson's trichrome staining. Functional myocardial changes were assessed using echocardiography. Our results demonstrated that miR-27a levels were elevated, while H2S levels were reduced in TAC mice and myocardial hypertrophy. Further luciferase and target scan assays confirmed that cystathionine-γ-lyase (CSE) was a direct target of miR-27a and was negatively regulated by it. Notably, enhancement of H2S expression in the heart was observed in mice injected with recombinant adeno-associated virus vector 9 (rAAV9)-anti-miR-27a and in cells transfected with a miR-27a inhibitor during cardiac hypertrophy. However, this effect was abolished by co-transfection with CSE siRNA and the miR-27a inhibitor. Conversely, injecting rAAV9-miR-27a yielded opposite results. Interestingly, our findings demonstrated that glucagon-like peptide-1 (GLP-1) agonists could mitigate myocardial damage by down-regulating miR-27a and up-regulating CSE. In summary, our study suggests that inhibition of miR-27a holds therapeutic promise for the treatment of cardiac hypertrophy by increasing H2S levels. Furthermore, our findings unveil a novel mechanism of GLP-1 agonists involving the miR-27a/H2S pathway in the management of cardiac hypertrophy.


Subject(s)
Aortic Valve Stenosis , Heart Failure , MicroRNAs , Animals , Mice , Cardiomegaly/genetics , Glucagon-Like Peptide 1 , MicroRNAs/genetics , Cystathionine gamma-Lyase
13.
MedComm (2020) ; 5(5): e521, 2024 May.
Article in Catalan | MEDLINE | ID: mdl-38660687

ABSTRACT

This study systematically analyzed the molecular mechanism and function of nuclear factor kappa B subunit 2 (NFKB2) in colorectal cancer (CRC) to investigate the potential of NFKB2 as a therapeutic target for CRC. Various experimental techniques, including RNA sequencing, proteome chip assays, and small molecule analysis, were used to obtain a deeper understanding of the regulation of NFKB2 in CRC. The results revealed that NFKB2 was upregulated in a significant proportion of patients with advanced hepatic metastasis of CRC. NFKB2 played an important role in promoting tumor growth through CD8+ T-cell exhaustion. Moreover, NFKB2 directly interacted with signal transducer and activator of transcription 2 (STAT2), leading to increased phosphorylation of STAT2 and the upregulation of programmed death ligand 1 (PD-L1). Applying a small molecule inhibitor of NFKB2 (Rg5) led to a reduction in PD-L1 expression and improved response to programmed death-1 blockade-based immunotherapy. In conclusion, the facilitated NFKB2-STAT2/PD-L1 axis may suppress immune surveillance in CRC and targeting NFKB2 may enhance the efficacy of immunotherapeutic strategies. Our results provide novel insights into the molecular mechanisms underlying the contribution of NFKB2 in CRC immune escape.

14.
Orthop Surg ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664223

ABSTRACT

OBJECTIVES: Multi-planar external fixation has been used for the management of segmental tibial fractures with severe soft tissue injuries. However, fewer specialized studies have been reported. The primary aim of this study was to describe our experience of treating fractures of this type using the Taylor Spatial Frame and Ilizarov external fixation methods. METHODS: We retrospectively analyzed 33 patients with segmental tibial fracture treated at our institution between January 2016 and December 2020. The patients were divided into double Taylor Spatial Frame (D-TSF) and Ilizarov groups based on the external fixation structure. Baseline demographic data included sex, age, injury side and cause, open or closed fracture, time from injury to surgery, complications, and external frame removal and fracture healing time. The hip-knee-ankle angle (HKA) was measured from preoperative, immediate postoperative, and final follow-up full-length X-rays of bilateral lower limbs. We determined the degree of deviation in the HKA by calculating the difference between the measured angle and the ideal value of 180°; the absolute value was used to assess recovery of the lower limb force line. At the final follow-up, Johner-Wruhs tibial fracture outcome criteria (J-W TFOC) were used to classify the postoperative function of the affected limb as excellent, good, moderate, or poor. Count data were analyzed with the chi-square test or Fisher's exact test; the Mann-Whitney U test was used for rank data. RESULTS: No statistically significant differences were observed between the two groups in terms of sex, age, side of injury, cause of injury, closed or open fracture, or time between injury and surgery, which indicates that the groups were comparable (p > 0.05). A statistically significant difference was observed in external frame removal and fracture healing time between the D-TSF and Ilizarov groups (36.24 ± 8.34 vs 45.42 ± 10.21 weeks, p = 0.009; 33.33 ± 8.21 vs 42.00 ± 9.78 weeks, p = 0.011). The Johner-Wruhs criteria were used to assess the function of the affected limb, the D-TSF group performed better in correcting the lower limb force line than the Ilizarov group. A statistically significant difference in terms of excellent ratings was observed between the two groups (18/2/1/0 vs 5/5/1/1, p = 0.010). Postoperative follow-up X-rays demonstrated a significant improvement in the HKA in both groups immediately after surgery and at the final follow-up compared to the angle before surgery. At the final follow-up, a statistically significant difference was observed in the degree of deviation in the HKA between the two groups (1.58° ± 0.84° vs 2.37° ± 1.00°, p = 0.023). CONCLUSION: The D-TSF treatment is associated with minimal secondary damage to soft tissue, a straightforward and minimally invasive procedure, multiplanar stable fracture fixation, and optimization of fracture alignment and lower limb force lines, therefore, it is highly effective therapeutic option for segmental tibial fracture.

15.
Chin J Nat Med ; 22(4): 329-340, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658096

ABSTRACT

The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding ß-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Ubiquitin Thiolesterase , Wnt Signaling Pathway , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , CD8-Positive T-Lymphocytes/drug effects , Mice , Humans , Wnt Signaling Pathway/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Cell Line, Tumor , Signal Transduction/drug effects , beta Catenin/metabolism , Mice, Inbred BALB C
16.
J Control Release ; 370: 287-301, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38679162

ABSTRACT

The success of lipid nanoparticles (LNPs) in treating COVID-19 promotes further research of mRNA vaccines for cancer vaccination. Aiming at overcoming the constraints of currently available mRNA carriers, various alternative nano-vectors have been developed for delivering tumor antigen encoding mRNA and showed versatility to induce potent anti-tumor immunity. The rationally designed nano-vaccines increase the immune activation capacity of the mRNA vaccines by promoting crucial aspects including mRNA stability, cellular uptake, endosomal escape and targeting of immune cells or organs. Herein, we summarized the research progress of various mRNA based nano-vaccines that have been reported for cancer vaccination, including LNPs, lipid enveloped hybrid nanoparticles, polymeric nanoparticles etc. Several strategies that have been reported for further enhancing the immune stimulation efficacy of mRNA nano-vaccines, including developing nano-vaccines for co-delivering adjuvants, combination of immune checkpoint inhibitors, and optimizing the injection routes for boosting immune responses, have been reviewed. The progress of mRNA nano-vaccines in clinical trials and the prospect of the mRNA vaccines for cancer vaccination are also discussed.

17.
Foods ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672884

ABSTRACT

The effects of subcritical water microenvironment on the physiochemical properties, antioxidant activity and in vitro digestion of polysaccharides (SWESPs) from squash were investigated. After single-factor experiments, twenty samples were successfully prepared at different extraction temperatures (110, 130, 150, 170 and 190 °C) and extraction times (4, 8, 12 and 16 min). Under a low temperature environment, the whole process was mainly based on the extraction of SWESP. At this time, the color of SWESP was white or light gray and the molecular mass was high. When the temperature was 150 °C, since the extraction and degradation of SWESP reached equilibrium, the maximum extraction rate (18.67%) was reached at 150 °C (12 min). Compared with traditional methods, the yield of squash SWESP extracted by subcritical water was 3-4 times higher and less time consuming. Under high temperature conditions, SWESPs were degraded and their antioxidant capacity and viscosity were reduced. Meanwhile, Maillard and caramelization reactions turned the SWESPs yellow-brown and produced harmful substances. In addition, different SWESPs had different effects on in vitro digestion. In brief, SWESPs prepared under different conditions have different structures and physicochemical properties, allowing the obtainment of the required polysaccharide. Our results show that squash polysaccharides prepared in different subcritical water states had good development potential and application in the food industry.

18.
Int Immunopharmacol ; 132: 112003, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38603858

ABSTRACT

Allergic rhinitis (AR) is a common allergic disease. Cytochrome P450, family 2, subfamily e, polypeptide 1 (Cyp2e1) is a member of the cytochrome P450 family of enzymes, while its role in AR is still unveiled. In AR mice, T cell-specific overexpression of Cyp2e1 relieved the AR symptoms. Overexpressed-Cyp2e1 restrained the infiltration of eosinophils and mast cells in the nasal mucosa of mice, and the inflammatory cells in nasal lavage fluid (NALF). Cyp2e1 overexpressed mice exhibited decreased goblet cell hyperplasia and mucus secretion as well as decreased MUC5AC expression in nasal mucosa. The epithelial permeability and integrity of nasal mucosa were improved upon Cyp2e1 overexpression in AR mice, as evidenced by decreased fluorescein isothiocyanate-dextran 4 content in serum, increased expression of IL-25, IL-33, and TSLP in NALF, and increased expression of ZO-1 and occluding in nasal mucosa. Cyp2e1 inhibited Th2 immune response by decreasing the expression and secretion of IL-4, IL-5, and IL-13 as well as the expression of GATA-3 in NALF or nasal mucosa. We proved that Cyp2e1 inhibited the differentiation of naïve CD4+ T cells toward the Th2 subtype, which was regulated by MAFB by binding to Cyp2e1 promoter to activate its transcription. Overall, these results show the potential role of Cyp2e1 in alleviating AR symptoms by restraining CD4+ T cells to Th2 cell differentiation. Our findings provide further insight into the AR mechanism.


Subject(s)
Cell Differentiation , Cytochrome P-450 CYP2E1 , Nasal Mucosa , Ovalbumin , Rhinitis, Allergic , Th2 Cells , Animals , Humans , Mice , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/genetics , Cytokines/metabolism , Disease Models, Animal , Lymphocyte Activation , Mice, Inbred BALB C , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Ovalbumin/immunology , Rhinitis, Allergic/immunology , Th2 Cells/immunology
19.
Ultrason Sonochem ; 105: 106849, 2024 May.
Article in English | MEDLINE | ID: mdl-38513544

ABSTRACT

Hydrodynamic cavitation (HC), a promising technology for enhancing processes, has shown distinct effectiveness and versatility in various chemical and environmental applications. The recently developed advanced rotational hydrodynamic cavitation reactors (ARHCRs), employing cavitation generation units (CGUs) to induce cavitation, have demonstrated greater suitability for industrial-scale applications than conventional devices. However, the intricate interplay between vortex and cavitation, along with its spatial-temporal evolution in the complex flow field of ARHCRs, remains inadequately elucidated. This study investigated the interaction mechanism between cavitation and vortex in a representative interaction-type ARHCR for the first time using the "simplified flow field strategy" and the Q-criterion. The findings reveal that the flow instability caused by CGUs leads to intricate helical and vortex flows, subsequently giving rise to both sheet and vortex cavitation. Subsequently, utilizing the Q-criterion, the vortex structures are identified to be concentrated inside and at CGU edges with evolution process of mergence and separation. These vortex structures directly influence the shape and dimensions of cavities, establishing a complex interaction with cavitation. Lastly, the vorticity transport equation analysis uncovered that the stretching and dilatation terms dominate the vorticity transport process. Simultaneously, the baroclinic term focuses on the vapor-liquid interface, characterized by significant alterations in density and pressure gradients. These findings contribute to a better comprehension of the cavitation-vortex interaction in ARHCRs.

20.
Oncogene ; 43(20): 1549-1564, 2024 May.
Article in English | MEDLINE | ID: mdl-38555278

ABSTRACT

Gastric carcinoma (GC) is regarded as one of the deadliest cancer characterized by diversity and haste metastasis and suffers limited understanding of the spatial variation between primary and metastatic GC tumors. In this project, transcriptome analysis on 46 primary tumorous, adjacent non-tumorous, and metastatic GC tissues was performed. The results demonstrated that metastatic tumorous tissues had diminished CD8+ T cells compared to primary tumors, which is mechanistically attributed to being due to innate immunity differences represented by marked differences in macrophages between metastatic and primary tumors, particularly those expressing ApoE, where their abundance is linked to unfavorable prognoses. Examining variations in gene expression and interactions indicated possible strategies of immune evasion hindering the growth of CD8+ T cells in metastatic tumor tissues. More insights could be gained into the immune evasion mechanisms by portraying information about the GC ecosystem.


Subject(s)
Stomach Neoplasms , Tumor Microenvironment , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Neoplasm Metastasis , CD8-Positive T-Lymphocytes/immunology , RNA-Seq , Male , Female , Gene Expression Regulation, Neoplastic , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Prognosis , Middle Aged , Gene Expression Profiling , Single-Cell Gene Expression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...