Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.458
Filter
1.
JCI Insight ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743491

ABSTRACT

Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I interferon response and autoantibodies. Treatment options are limited due to incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of JDM patients at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment towards an immature naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist despite disease quiescence. We applied network analysis to reveal that hyperactivation of the type I interferon response in all immune populations is coordinated with previously masked cell states including dysfunctional protein processing in CD4+ T cells and regulation of cell death programming in NK, CD8+ T cells and gdT cells. Together, these findings unveil the coordinated immune dysregulation underpinning JDM and provide insight into strategies for restoring balance in immune function.

2.
Med Oncol ; 41(6): 155, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744773

ABSTRACT

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.


Subject(s)
Carcinoma, Ovarian Epithelial , Epithelial-Mesenchymal Transition , Hypoxia-Inducible Factor 1, alpha Subunit , Interleukin-6 , MicroRNAs , Neoplasm Invasiveness , Ovarian Neoplasms , STAT3 Transcription Factor , Signal Transduction , MicroRNAs/genetics , Humans , Epithelial-Mesenchymal Transition/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , Animals , Neoplasm Invasiveness/genetics , Neoplasms, Glandular and Epithelial/pathology , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Neoplasm Metastasis , Mice, Inbred BALB C
3.
BMC Cancer ; 24(1): 571, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720279

ABSTRACT

BACKGROUND: Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC). METHODS: Data on gene expression and clinical details were obtained from publicly accessible databases. GLRGs were obtained from the Genecards database. Through nonnegative matrix factorization (NMF) clustering, molecular groupings with various GLRG expression patterns were identified. LASSO Cox regression analysis was employed to create a prognostic model. Use rich algorithms such as GSEA, GSVA, xCELL ssGSEA, EPIC,CIBERSORT, MCPcounter, ESTIMATE, TIMER, TIDE, and Oncoppredict to analyze functional pathway characteristics of the forecast signal, immune status, anti-tumor therapy, etc. The expression was assessed using Western blot and quantitative real-time PCR techniques. A total of 113 algorithm combinations were combined to screen out the most significant GLRGs in the signature for in vitro experimental verification, such as colony formation, EdU cell proliferation, wound healing, apoptosis, and Transwell assays. RESULTS: A total of 714 GLRGs were found, and 227 of them were identified as prognostic-related genes. And ten GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, SLC16A1, HK2, LPCAT1 and PGR-AS1) were identified to construct the prognostic model of patients with EC. Based on GLRGs, the risk model's prognosis and independent prognostic value were established. The signature of GLRGs exhibited a robust correlation with the infiltration of immune cells and the sensitivity to drugs. In cytological experiments, we selected HK2 as candidate gene to verify its value in the occurrence and development of EC. Western blot and qRT-PCR revealed that HK2 was substantially expressed in EC cells. According to in vitro experiments, HK2 knockdown can increase EC cell apoptosis while suppressing EC cell migration, invasion, and proliferation. CONCLUSION: The GLRGs signature constructed in this study demonstrated significant prognostic value for patients with endometrial carcinoma, thereby providing valuable guidance for treatment decisions.


Subject(s)
Endometrial Neoplasms , Lipid Metabolism , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Prognosis , Lipid Metabolism/genetics , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Cell Line, Tumor , Gene Expression Profiling
4.
BMC Oral Health ; 24(1): 540, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720327

ABSTRACT

OBJECTIVE: To investigate the effect of concentrated growth factor (CGF) combined with sodium hyaluronate (SH) on temporomandibular joint osteoarthritis (TMJOA). METHODS: Sixty patients with TMJOA who were diagnosed by cone-beam computed tomography (CBCT) between March 2020 and March 2023 at the Stomatological Hospital of Xi'an Jiaotong University were randomly divided into a control group (n = 30) and an experimental group (n = 30). The patients in the experimental group were treated with CGF + SH, and those in the control group were treated with SH only. The visual analogue scale (VAS) score indicating pain in the temporomandibular joint (TMJ) area; the Helkimo Clinical Dysfunction Index (Di); and changes in condylar CBCT at the first visit and 2 weeks, 3 months and 6 months after treatment were recorded. The CBCT data of the patients in the experimental and control groups were collected, and the three-dimensional CBCT image sequences were imported into Mimics Medical 19.0 software in DICOM format for condylar reconstruction. RESULTS: The VAS scores at 2 weeks, 3 months and 6 months after treatment were significantly lower in the experimental group than in the control group (P < 0.05), and the pain in the experimental group was significantly relieved. The Di was significantly lower in the experimental group than in the control group (P < 0.05), and the clinical function of the TMJ improved. After treatment, the CBCT score was significantly lower in the experimental group than in the control group (P < 0.05), and the condylar bone cortex was obviously repaired. Observation of the condylar bone cortex by three-dimensional reconstruction showed the same results as those obtained by CBCT. CONCLUSION: CGF combined with SH is effective in the treatment of TMJOA and can improve muscle pain, TMJ pain, Impaired TMJ function, Impaired range of movement, Pain on movement of the mandible and promote bone repair. THE REGISTRATION NUMBER (TRN): ChiCTR2400082712. THE DATE OF REGISTRATION: April 5, 2024.


Subject(s)
Cone-Beam Computed Tomography , Hyaluronic Acid , Osteoarthritis , Temporomandibular Joint Disorders , Humans , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/administration & dosage , Female , Male , Osteoarthritis/drug therapy , Osteoarthritis/diagnostic imaging , Temporomandibular Joint Disorders/drug therapy , Temporomandibular Joint Disorders/diagnostic imaging , Adult , Middle Aged , Pain Measurement , Intercellular Signaling Peptides and Proteins/therapeutic use , Treatment Outcome
5.
Infect Dis Ther ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733495

ABSTRACT

INTRODUCTION: Listeriosis is a severe food-borne disease caused by Listeria monocytogenes infection. The data of listeriosis in Xi'an population are limited. The aim of this study is to evaluate the clinical features and fatality risk factors for listeriosis in three tertiary-care hospitals in Xi'an, China METHODS: The characteristics of demographic data, underlying diseases, clinical manifestations, laboratory indicators, cranial imaging examination, antibiotics therapeutic schemes, and clinical outcomes were collected between 2011 and 2023. Logistic regression analysis was performed. RESULTS: Seventy-one etiologically confirmed listeriosis patients were enrolled, including 12 neonatal and 59 non-neonatal cases. The majority of neonatal listeriosis presented as preterm (50%) and fetal distress (75%). The main clinical manifestations of non-neonatal listeriosis included fever (88%), headache (32%), disorder of consciousness (25%), vomiting (17%), abdominal pain (12%), and convulsions (8%). The fatality rate in neonatal cases was higher than in non-neonatal listeriosis (42 vs. 17%). Although no deaths were reported in maternal listeriosis, only two of 23 patients had an uneventful obstetrical outcome. Five maternal listeriosis delivered culture-positive neonates, three of whom decreased within 1 week post-gestation due to severe complications. Twenty-eight cases were neurolisteriosis and 43 cases were bacteremia. Neurolisteriosis had a higher fatality rate compared with bacteremia listeriosis (36 vs. 12%). The main neuroradiological images were cerebral edema/hydrocephalus, intracranial infection, and cerebral hernia. Listeria monocytogenes showed extremely low resistance to ampicillin (two isolates) and penicillin (one isolate). The fatality risk factors were the involvement of the central nervous system, hyperbilirubinemia, and hyponatremia for all enrolled subjects. Hyperuricemia contributed to the elevation of fatality risk in non-neonatal listeriosis. CONCLUSIONS: When the patients suffered with symptoms of fever and central nervous system infection, they should be alert to the possibility of listeriosis. Early administration of ampicillin- or penicillin-based therapy might be beneficial for recovery of listeriosis.

6.
Mol Genet Genomics ; 299(1): 50, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734849

ABSTRACT

Intracerebral hemorrhage (ICH) is one of the major causes of death and disability, and hypertensive ICH (HICH) is the most common type of ICH. Currently, the outcomes of HICH patients remain poor after treatment, and early prognosis prediction of HICH is important. However, there are limited effective clinical treatments and biomarkers for HICH patients. Although circRNA has been widely studied in diseases, the role of plasma exosomal circRNAs in HICH remains unknown. The present study was conducted to investigate the characteristics and function of plasma exosomal circRNAs in six HICH patients using circRNA microarray and bioinformatics analysis. The results showed that there were 499 differentially expressed exosomal circRNAs between the HICH patients and control subjects. According to GO annotation and KEGG pathway analyses, the targets regulated by differentially expressed exosomal circRNAs were tightly related to the development of HICH via nerve/neuronal growth, neuroinflammation and endothelial homeostasis. And the differentially expressed exosomal circRNAs could mainly bind to four RNA-binding proteins (EIF4A3, FMRP, AGO2 and HUR). Moreover, of differentially expressed exosomal circRNAs, hsa_circ_00054843, hsa_circ_0010493 and hsa_circ_00090516 were significantly associated with bleeding volume and Glasgow Coma Scale score of the subjects. Our findings firstly revealed that the plasma exosomal circRNAs are significantly involved in the progression of HICH, and could be potent biomarkers for HICH. This provides the basis for further research to pinpoint the best biomarkers and illustrate the mechanism of exosomal circRNAs in HICH.


Subject(s)
Exosomes , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/blood , Exosomes/genetics , Exosomes/metabolism , Male , Female , Middle Aged , Aged , Intracranial Hemorrhage, Hypertensive/genetics , Intracranial Hemorrhage, Hypertensive/blood , Biomarkers/blood , Computational Biology/methods , Gene Expression Profiling , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/blood , Gene Regulatory Networks
7.
Cell Rep ; 43(6): 114246, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762885

ABSTRACT

The decidua plays a crucial role in providing structural and trophic support to the developing conceptus before placentation. Following embryo attachment, embryonic components intimately interact with the decidual tissue. While evidence indicates the participation of embryo-derived factors in crosstalk with the uterus, the extent of their impact on post-implantation decidual development requires further investigation. Here, we utilize transgenic mouse models to selectively eliminate primary trophoblast giant cells (pTGCs), the embryonic cells that interface with maternal tissue at the forefront. pTGC ablation impairs decidualization and compromises decidual interferon response and lipid metabolism. Mechanistically, pTGCs release factors such as interferon kappa (IFNK) to strengthen the decidual interferon response and lipoprotein lipase (LPL) to enhance lipid accumulation within the decidua, thereby promoting decidualization. This study presents genetic and metabolomic evidence reinforcing the proactive role of pTGC-derived factors in mobilizing maternal resources to strengthen decidualization, facilitating the normal progression of early pregnancy.

8.
Neuropsychiatr Dis Treat ; 20: 1049-1064, 2024.
Article in English | MEDLINE | ID: mdl-38770535

ABSTRACT

Purpose: Anxious depression (AD) is a common, distinct depression subtype. This exploratory subgroup analysis aimed to explore the effects of acupuncture as an add-on therapy of selective serotonin reuptake inhibitors (SSRIs) for patients with AD or non-anxious depression (NAD). Patients and Methods: Four hundred and sixty-five patients with moderate-to-severe depression from the AcuSDep pragmatic trial were included in analysis. Patients were randomly assigned to receive MA+SSRIs, EA+SSRIs, or SSRIs alone (1:1:1) for six weeks. AD was defined by using dimensional criteria. The measurement instruments included 17-items Hamilton Depression Scale (HAMD-17), Self-Rating Depression Scale (SDS), Clinical Global Impression (CGI), Rating Scale for Side Effects (SERS), and WHO Quality of Life-BREF (WHOQOL-BREF). Comparison between AD and NAD subgroups and comparisons between groups within either AD or NAD subgroups were conducted. Results: Eighty percent of the patients met the criteria for AD. The AD subgroup had poorer clinical manifestations and treatment outcomes compared to those of the NAD subgroup. For AD patients, the HAMD response rate, remission rate, early onset rate, and the score changes on each scale at most measurement points on the two acupuncture groups were significantly better than the SSRIs group. For NAD patients, the HAMD early onset rates of the two acupuncture groups were significantly better than the SSRIs group. Conclusion: For AD subtype patients, either MA or EA add-on SSRIs showed comprehensive improvements, with small-to-medium effect sizes. For NAD subtype patients, both the add-on acupuncture could accelerate the response to SSRIs treatment. The study contributed to the existing literature by providing insights into the potential benefits of acupuncture in combination with SSRIs, especially for patients with AD subtypes. Due to its limited nature as a post hoc subgroup analysis, prospectively designed, high-quality trials are warranted. Clinical Trials Registration: ChiCTR-TRC-08000297.

9.
J Neurochem ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690718

ABSTRACT

Positron emission tomography (PET) imaging studies in laboratory animals are almost always performed under isoflurane anesthesia to ensure that the subject stays still during the image acquisition. Isoflurane is effective, safe, and easy to use, and it is generally assumed to not have an impact on the imaging results. Motivated by marked differences observed in the brain uptake and metabolism of the PET tracer 3-[18F]fluoro-4-aminopyridine [(18F]3F4AP) between human and nonhuman primate studies, this study investigates the possible effect of isoflurane on this process. Mice received [18F]3F4AP injection while awake or under anesthesia and the tracer brain uptake and metabolism was compared between groups. A separate group of mice received the known cytochrome P450 2E1 inhibitor disulfiram prior to tracer administration. Isoflurane was found to largely abolish tracer metabolism in mice (74.8 ± 1.6 vs. 17.7 ± 1.7% plasma parent fraction, % PF) resulting in a 4.0-fold higher brain uptake in anesthetized mice at 35 min post-radiotracer administration. Similar to anesthetized mice, animals that received disulfiram showed reduced metabolism (50.0 ± 6.9% PF) and a 2.2-fold higher brain signal than control mice. The higher brain uptake and lower metabolism of [18F]3F4AP observed in anesthetized mice compared to awake mice are attributed to isoflurane's interference in the CYP2E1-mediated breakdown of the tracer, which was confirmed by reproducing the effect upon treatment with the known CYP2E1 inhibitor disulfiram. These findings underscore the critical need to examine the effect of isoflurane in PET imaging studies before translating tracers to humans that will be scanned without anesthesia.

10.
Aging (Albany NY) ; 162024 May 20.
Article in English | MEDLINE | ID: mdl-38771129

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) accounts for a high proportion of tumor deaths globally, while methyltransferase-related lncRNAs in LUAD were poorly studied. METHODS: In our study, we focused on two distinct cohorts, TCGA-LUAD and GSE3021, to establish a signature of methyltransferase-related long non-coding RNAs (MeRlncRNAs) in LUAD. We employed univariate Cox and LASSO regression analyses as our main analytical tools. The GSE30219 cohort served as the validation cohort for our findings. Furthermore, to explore the differential pathway enrichments between groups stratified by risk, we utilized Gene Set Enrichment Analysis (GSEA). Additionally, single-sample GSEA (ssGSEA) was conducted to assess the immune infiltration landscape within each sample. Reverse transcription quantitative PCR (RT-qPCR) was also performed to verify the expression of prognostic lncRNAs in both clinically normal and LUAD samples. RESULTS: In LUAD, we identified a set of 32 MeRlncRNAs. We further narrowed our focus to six prognostic lncRNAs to develop gene signatures. The TCGA-LUAD cohort and GSE30219 were utilized to validate the risk score model derived from these signatures. Our analysis showed that the risk score served as an independent prognostic factor, linked to immune-related pathways. Additionally, the analysis of immune infiltration revealed that the immune landscape in high-risk groups was suppressed, which could contribute to poorer prognoses. We also constructed a regulatory network comprising 6 prognostic lncRNAs, 19 miRNAs, and 21 mRNAs. Confirmatory RT-qPCR results aligned with public database findings, verifying the expression of these prognostic lncRNAs in the samples. CONCLUSION: The prognostic gene signature of LUAD associated with MeRlncRNAs that we provided, may offer us a comprehensive picture of the prognosis prediction for LUAD patients.

11.
J Control Release ; 370: 643-652, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744344

ABSTRACT

Neonatal hypoglycemia is a common disease in newborns, which can precipitate energy shortage and follow by irreversible brain and neurological injury. Herein, we present a novel approach for treating neonatal hypoglycemia involving an adhesive polyvinylpyrrolidone/gallic acid (PVP/GA) film loading glucose. The PVP/GA film with loose cross-linking can be obtained by mixing their ethanol solution and drying complex. When depositing this soft film onto wet tissue, it can absorb interfacial water to form a hydrogel with a rough surface, which facilitates tight contact between the hydrogel and tissue. Meanwhile, the functional groups in the hydrogels and tissues establish both covalent and non-covalent bonds, leading to robust bioadhesion. Moreover, the adhered PVP/GA hydrogel can be detached without damaging tissue as needed. Furthermore, the PVP/GA films exhibit excellent antibacterial properties and biocompatibility. Notably, these films effectively load glucose and deliver it to the sublingual tissue of newborn rabbits, showcasing a compelling therapeutic effect against neonatal hypoglycemia. The strengths of the PVP/GA film encompass excellent wet adhesion in the wet and highly dynamic environment of the oral cavity, on-demand detachment, antibacterial efficacy, biocompatibility, and straightforward preparation. Consequently, this innovative film holds promise for diverse biomedical applications, including but not limited to wearable devices, sealants, and drug delivery systems.

12.
Sci Rep ; 14(1): 11105, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750155

ABSTRACT

4-aminopyridine (4AP) is a potassium (K+) channel blocker used clinically to improve walking in people with multiple sclerosis (MS). 4AP binds to exposed K+ channels in demyelinated axons, reducing the leakage of intracellular K+ and enhancing impulse conduction. Multiple derivatives of 4AP capable of blocking K+ channels have been reported including three radiolabeled with positron emitting isotopes for imaging demyelinated lesions using positron emission tomography (PET). However, there remains a demand for novel molecules with suitable physicochemical properties and binding affinity that can potentially be radiolabeled and used as PET radiotracers. In this study, we introduce 3-fluoro-5-methylpyridin-4-amine (5Me3F4AP) as a novel trisubstituted K+ channel blocker with potential application in PET. 5Me3F4AP has comparable potency to 4AP and the PET tracer 3-fluoro-4-aminopyridine (3F4AP). Compared to 3F4AP, 5Me3F4AP exhibits comparable basicity (pKa = 7.46 ± 0.01 vs. 7.37 ± 0.07, P-value = 0.08), greater lipophilicity (logD = 0.664 ± 0.005 vs. 0.414 ± 0.002, P-value < 0.0001) and higher permeability to an artificial brain membrane (Pe = 88.1 ± 18.3 vs. 31.1 ± 2.9 nm/s, P-value = 0.03). 5Me3F4AP is also more stable towards oxidation in vitro by the cytochrome P450 enzyme CYP2E1 (IC50 = 36.2 ± 2.5 vs. 15.4 ± 5.1, P-value = 0.0003); the enzyme responsible for the metabolism of 4AP and 3F4AP. Taken together, 5Me3F4AP has promising properties as a candidate for PET imaging warranting additional investigation.


Subject(s)
Positron-Emission Tomography , Potassium Channel Blockers , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/chemistry , Humans , Positron-Emission Tomography/methods , 4-Aminopyridine/pharmacology , 4-Aminopyridine/chemistry , 4-Aminopyridine/analogs & derivatives , Amifampridine/metabolism
13.
J Transl Med ; 22(1): 419, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702818

ABSTRACT

BACKGROUND: Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS: VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS: VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS: VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.


Subject(s)
Apoptosis , Cell Proliferation , Glioblastoma , Mitochondria , Organelle Biogenesis , Vascular Endothelial Growth Factor Receptor-2 , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
14.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38712041

ABSTRACT

Spinal cord injuries (SCI) often lead to lifelong disability. Among the various types of injuries, incomplete and discomplete injuries, where some axons remain intact, offer potential for recovery. However, demyelination of these spared axons can worsen disability. Demyelination is a reversible phenomenon, and drugs like 4-aminopyridine (4AP), which target K+ channels in demyelinated axons, show that conduction can be restored. Yet, accurately assessing and monitoring demyelination post-SCI remains challenging due to the lack of suitable imaging methods. In this study, we introduce a novel approach utilizing the positron emission tomography (PET) tracer, [ 18 F]3F4AP, specifically targeting K+ channels in demyelinated axons for SCI imaging. Rats with incomplete contusion injuries were imaged up to one month post-injury, revealing [ 18 F]3F4AP's exceptional sensitivity to injury and its ability to detect temporal changes. Further validation through autoradiography and immunohistochemistry confirmed [ 18 F]3F4AP's targeting of demyelinated axons. In a proof-of-concept study involving human subjects, [ 18 F]3F4AP differentiated between a severe and a largely recovered incomplete injury, indicating axonal loss and demyelination, respectively. Moreover, alterations in tracer delivery were evident on dynamic PET images, suggestive of differences in spinal cord blood flow between the injuries. In conclusion, [ 18 F]3F4AP demonstrates efficacy in detecting incomplete SCI in both animal models and humans. The potential for monitoring post-SCI demyelination changes and response to therapy underscores the utility of [ 18 F]3F4AP in advancing our understanding and management of spinal cord injuries.

15.
J Hosp Infect ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705475

ABSTRACT

INTRODUCTION: The prevention and control of hospital-acquired infections remain a significant challenge worldwide, as textiles used in hospital wards are highly involved in transmission processes. Herein, we report a new antibacterial medical fabric used to prepare hospital pillowcases, bottom sheets, and quilt covers for controlling and reducing hospital-acquired infections. METHOD: The medical fabric was composed of blended yarns of staple polyester and degradable poly(3-hydroxybutyrate co-3-hydroxyvalerate)/polylactide fibres, which were then coated with polylactide oligomers, an environmentally friendly and safe antimicrobial agent with excellent thermal stability in high-temperature laundry. A clinical trial was conducted with emphasis on the bacterial species that were closely related to the infection cases in the trial hospital. RESULT: After 7 days of usage, 94% of PET/PHBV/PLA-PLAO fabric could keep less than 20 CFU/100 cm2 of total bacterial amount, meeting hygiene and cleanliness standards. CONCLUSION: This study demonstrates the potential of fabrics containing polyhydroxyalkanoate oligomers as highly effective, safe, and long-lasting antimicrobial medical textiles that can effectively reduce the incidence of hospital-acquired infections.

16.
J Oleo Sci ; 73(5): 657-664, 2024.
Article in English | MEDLINE | ID: mdl-38692889

ABSTRACT

This present work investigated the influence of black rice anthocyanins as antioxidants on the oxidation stability of oil. Malonic acid, succinic acid and succinic anhydride were grafted on black rice anthocyanins through acylation method to improve their antioxidant activity in oil. The results from fourier transform infrared spectroscopy (FTIR) showed new absorption peaks near 1744 cm -1 and 1514 cm -1 , which implied that malonic acid, succinic acid and succinic anhydride grafted on the -OH of glucoside and rutinoside through esterification reaction and resulted that the polarity of these were reduced. Total content of anthocyanin (TAC) decreased to 166. 3 mg/g, 163.7 mg/g and 150.2 mg/g, respectively after modification with succinic acid, malonic acid and succinic anhydride. Compared with native anthocyanins, the acylation of black rice anthocyanins partially reduced its antioxidant activity. In addition, DPPH clearance of molecular modified anthocyanins decreased to 62.6% (San-An). As revealed in the oil stability through the determination of primary oxidation products (PV) and secondary oxidation products (p-AV), Sa-An, Ma-An and San-An showed stronger antioxidant activity in Schaal oven accelerated oxidation test during 12 days than native black rice anthocyanin in both corn oil and flaxseed oil. Molecular modified black rice anthocyanins are expected to be used as colorants, antioxidants, etc. in oil-rich food.


Subject(s)
Anthocyanins , Antioxidants , Oryza , Oxidation-Reduction , Anthocyanins/chemistry , Anthocyanins/pharmacology , Antioxidants/pharmacology , Oryza/chemistry , Acylation , Plant Oils/chemistry , Plant Oils/pharmacology , Spectroscopy, Fourier Transform Infrared
17.
Nat Aging ; 4(5): 664-680, 2024 May.
Article in English | MEDLINE | ID: mdl-38760576

ABSTRACT

Hyaline cartilage fibrosis is typically considered an end-stage pathology of osteoarthritis (OA), which results in changes to the extracellular matrix. However, the mechanism behind this is largely unclear. Here, we found that the RNA helicase DDX5 was dramatically downregulated during the progression of OA. DDX5 deficiency increased fibrosis phenotype by upregulating COL1 expression and downregulating COL2 expression. In addition, loss of DDX5 aggravated cartilage degradation by inducing the production of cartilage-degrading enzymes. Chondrocyte-specific deletion of Ddx5 led to more severe cartilage lesions in the mouse OA model. Mechanistically, weakened DDX5 resulted in abundance of the Fn1-AS-WT and Plod2-AS-WT transcripts, which promoted expression of fibrosis-related genes (Col1, Acta2) and extracellular matrix degradation genes (Mmp13, Nos2 and so on), respectively. Additionally, loss of DDX5 prevented the unfolding Col2 promoter G-quadruplex, thereby reducing COL2 production. Together, our data suggest that strategies aimed at the upregulation of DDX5 hold significant potential for the treatment of cartilage fibrosis and degradation in OA.


Subject(s)
Alternative Splicing , DEAD-box RNA Helicases , Fibrosis , G-Quadruplexes , Osteoarthritis , Animals , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Mice , Osteoarthritis/pathology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Fibrosis/metabolism , Fibrosis/genetics , Fibrosis/pathology , Humans , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Male
18.
Appl Opt ; 63(8): 1947-1951, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38568633

ABSTRACT

Three samples whose growth temperatures were 450°C, 500°C, and 560°C for S E S A M 1, S E S A M 2, and S E S A M 3, respectively, were tested by femto-second time-resolved transient absorption spectroscopy. The results indicate that the carrier dynamics of excited state absorption were dominant, and the lifetimes of carriers trapped by defect levels were about tens of pico-seconds. To further study the influence of carrier dynamics and recovery time of samples by ion-implantation, B + ions of 80 and 130 KeV were implanted into the samples with dose of 1014/c m 2. The modified samples showed a dominance of ultra-fast carrier dynamics of ground-state bleaching and direct recombination, which lasted for hundreds of femto-seconds, over excited state absorption. Additionally, carrier fast trapping was observed to be competitive with the excited state absorption process. After ion-implantation, the carrier dynamics of carrier trapping were enhanced, which contributed to forming an ultra-short laser, while the carrier dynamics of absorption of the excited state were suppressed. The conclusion that defect levels were partially eliminated by B + ion-implantation can be drawn.

19.
Discov Oncol ; 15(1): 103, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573423

ABSTRACT

BACKGROUND: Soft tissue recurrence of giant cell tumor of bone (GCTB) is rare. This study aims to provide its prevalence, recurrent locations, risk factors, effective detection methods and a modified classification for this recurrence. METHODS: Patients with soft tissue recurrence after primary surgery for GCTB were screened from January 2003 to December 2022. General data, recurrence frequency, types according to an original classification (type-I: peripheral ossification; type-II: central ossification; type-III: without ossification), a modified classification with more detailed subtypes (type I-1: ≤ 1/2 peripheral ossification; type I-2: ≥ 1/2 peripheral ossification; type II-1: ≤ 1/2 central ossification; type II-2: ≥ 1/2 central ossification; type III: without ossification), locations, detection methods such as ultrasonography, X-ray, CT or MRI, Musculoskeletal Tumor Society (MSTS) scores were recorded. Multivariate regression analysis was conducted to identify risk factors for recurrence frequency. RESULTS: A total of 558 recurrent cases were identified from 2009 patients with GCTB. Among them, 32 were soft tissue recurrence. The total recurrence rate was 27.78% (558/2009). Soft tissue recurrence rate was 5.73% among 558 recurrent cases, and 1.59% among 2009 GCTB patients, respectively. After excluding one patient lost to follow-up, 10 males and 21 females with the mean age of 28.52 ± 9.93 (16-57) years were included. The definitive diagnosis of all recurrences was confirmed by postoperative pathology. The interval from primary surgery to the first recurrence was 23.23 ± 26.12 (2-27) months. Eight recurrences occurred from primary GCTB located at distal radius, followed by distal femur (6 cases). Recurrence occurred twice in 12 patients and 3 times in 7 patients. Twenty-seven recurrences were firstly detected by ultrasonography, followed by CT or X-ray (10 cases in each). Types at the first recurrence were 5 cases in type-I, 8 in type-II and 18 in type-III. According to the modified classification, 3 patients in type I-1, 2 in type I-2, 1 in type II-1, 7 in type II-2, and 18 in type III. The mean MSTS score was 26.62 ± 4.21 (14-30). Neither Campanacci grade nor recurrence type, modified classification and other characters, were identified as risk factors. CONCLUSIONS: Soft tissue recurrence of GCTB may recur for more than once and distal radius was the most common location of primary GCTB that would suffer a soft tissue recurrence. Ultrasonography was a useful method to detect the recurrence. Since no risk factors were discovered, a careful follow-up with ultrasonography was recommended.

20.
Adv Sci (Weinh) ; : e2309760, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582506

ABSTRACT

The treatment of tumors in developing countries, especially those with poor medical conditions, remains a significant challenge. Herein, a novel solvent-exchange strategy to prepare adhesive hydrogels for the concurrent treatment of tumors through synchronous ethanol ablation and local chemotherapy is reported. First, a poly (gallic acid-lipoic acid) (PGL) ethanol gel is prepared that can undergo solvent exchange with water to form a hydrogel in situ. PGL ethanol gel deposited on the wet tissue can form a hydrogel in situ to effectively repel interfacial water and establish a tight contact between the hydrogel and tissue. Additionally, the functional groups between the hydrogels and tissues can form covalent and non-covalent bonds, resulting in robust adhesion. Furthermore, this PGL ethanol gel demonstrates exceptional capacity to effectively load antitumor drugs, allowing for controlled and sustained release of the drugs locally and sustainably both in vitro and in vivo. In addition, the PGL ethanol gel can combine ethanol ablation and local chemotherapy to enhance the antitumor efficacy in vitro and in vivo. The PGL ethanol gel-derived hydrogel shows robust wet bioadhesion, drug loading, sustained release, good biocompatibility and biodegradability, easy preparation and usage, and cost-effectiveness, which make it a promising bioadhesive for diverse biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...