Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
Front Pharmacol ; 15: 1421662, 2024.
Article in English | MEDLINE | ID: mdl-39221141

ABSTRACT

Eucommia ulmoides (EU) is a precious tree species native to China originating during the ice age. This species has important economic value and comprehensive development potential, particularly in medicinal applications. The medicinal parts of EU are its bark (Eucommiae cortex) and leaves (Eucommiae folium) which have been successively used as a traditional Chinese medicine to treat diseases since the first century BC. During the last 2 decades, as natural polysaccharides have become of increasing interest in pharmacology, biomedicine, cosmetic and food applications, more and more scholars have begun to study polysaccharides derived from EU as well. EU polysaccharides have been found to have a variety of biological functions both in vivo and in vitro, including immunomodulatory, antioxidant, anti-inflammatory, anticomplementary, antifatigue, and hepatoprotective activities. This review aims to summarize these recent advances in extraction, purification, structural characteristics, pharmacological activities and applications in different fields of EU bark and leaf polysaccharides. It was found that both Eucommiae folium polysaccharides and Eucommiae cortex polysaccharides were suitable for medicinal use. Eucommiae folium may potentially be used to substitute for Eucommiae cortex in terms of immunomodulation and antioxidant activities. This study serves as a valuable reference for improving the comprehensive utilization of EU polysaccharides and further promoting the application of EU polysaccharides.

2.
Fitoterapia ; 179: 106214, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39278423

ABSTRACT

Cannabis sativa fruit (Cannabis Fructus) refers to the dried and ripe fruit of Cannabis sativa L. It is widely distributed in the northeast, North, and South China. It has medicinal, ecological, and economic values. This study aimed to review the chemical constituents and pharmacological activities of Cannabis Fructus, providing a reference for further exploration of Cannabis Fructus. Comprehensive information on Cannabis Fructus was collected via electronic searches (e.g., Google Scholar, PubMed, Sci Finder, and Web of Science) and from books on phytochemistry. Cannabis Fructus contains various compounds such as phenylpropanoids, flavonoids, steroids and terpenoids, cannabinoids, fatty acids, alkaloids, phenanthrenes, proteins, and polysaccharides. Its active ingredients exhibit anti-inflammatory, anti-oxidant, anti-bacterial, anti-aging, anti-fatigue, anti-tumor, anti-constipation, neuroprotective, lipoid-regulating, hepatoprotective, and immunomodulatory properties.

3.
Front Pharmacol ; 15: 1440979, 2024.
Article in English | MEDLINE | ID: mdl-39239653

ABSTRACT

Chelidonium majus L. (C. majus), commonly known as "Bai Qu Cai" in China, belongs to the genus Chelidonium of the Papaveraceae family. It has rich medicinal value, such as alleviating coughs, asthma, spasms and pain. Recent studies have demonstrated that C. majus is abundant in various alkaloids, which are the primary components of C. majus and have a range of pharmacological effects, including anti-microbial, anti-inflammatory, anti-viral, and anti-tumor effects. So far, 94 alkaloids have been isolated from C. majus, including benzophenanthridine, protoberberine, aporphine, protopine and other types of alkaloids. This paper aims to review the research progress in phytochemistry, pharmacology and toxicology of C. majus alkaloids, in order to provide a theoretical basis for the application of C. majus in the field of medicinal chemistry and to afford reference for further research and development efforts.

4.
Cell Mol Gastroenterol Hepatol ; 18(5): 101387, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111635

ABSTRACT

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma can develop from precursor lesions, including pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasm (IPMN). Previous studies indicated that loss of Acvr1b accelerates the Kras-mediated development of papillary IPMN in the mouse pancreas; however, the cell type predominantly affected by these genetic changes remains unclear. METHODS: We investigated the contribution of cellular origin by inducing IPMN associated mutations (KRASG12D expression and Acvr1b loss) specifically in acinar (Ptf1aCreER;KrasLSL-G12D;Acvr1bfl/fl mice) or ductal (Sox9CreER;KrasLSL-G12D;Acvr1bfl/fl mice) cells in mice. We then performed magnetic resonance imaging and a thorough histopathologic analysis of their pancreatic tissues. RESULTS: The loss of Acvr1b increased the development of pancreatic intraepithelial neoplasia and IPMN-like lesions when either acinar or ductal cells expressed a Kras mutation. Magnetic resonance imaging, immunohistochemistry, and histology revealed large IPMN-like lesions in these mice that exhibited features of flat, gastric epithelium. In addition, cyst formation in both mouse models was accompanied by chronic pancreatitis. Experimental acute pancreatitis accelerated the development of large mucinous cysts and pancreatic intraepithelial neoplasia when acinar, but not ductal, cells expressed mutant Kras and lost Acvr1b. CONCLUSIONS: These findings indicate that loss of Acvr1b in the presence of the Kras oncogene promotes the development of large and small precancerous lesions from both ductal and acinar cells. However, the IPMN-like phenotype was not equivalent to that observed when these mutations were made in all pancreatic cells during development. Our study underscores the significance of the cellular context in the initiation and progression of precursor lesions from exocrine cells.

5.
Int J Biol Macromol ; 278(Pt 3): 134823, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39168226

ABSTRACT

In our previous study, bile Arisaema was elucidated to have a significant anti-febrile effect, but the pharmacodynamic material basis of this effect remains uncertain. Herein, we found that the soluble polysaccharide fraction from bile Arisaema presents a remarkable antipyretic effect through balancing the gut microbiota and regulating metabolic profiling. Bile Arisaema polysaccharide (BAP) was characterized for its monosaccharide composition with arabinose, galactose, glucose, mannose and xylose (0.028:0.072:0.821:0.05:0.029, molar ratios) and amino acid composition with arginine, threonine, alanine, glycine, serine, proline and tyrosine (109.33, 135.78, 7.22, 8.86, 21.07, 4.96, 12.31 µg/mg). A total of 50 peptides were identified from BAP using Ltq-Orbitrap MS/MS. The oral administration of 100 mg/kg BAP significantly increased the antipyretic effect in yeast-induced fever rats by comparing the rectal temperature. Mechanistically, the inflammation and disorders of neurotransmitters caused by fever were improved by treatment with BAP. The western blotting results suggested that BAP could suppress fever-induced inflammation by down-regulating the NF-κB/TLR4/MyD88 signaling pathway. We also demonstrated that BAP affects lipid metabolism, amino acid metabolism and carbohydrate metabolism and balances the gut microbiota. In summary, the present study provides a crucial foundation for determining polysaccharide activity in bile Arisaema and further investigating the underlying mechanism of action.


Subject(s)
Antipyretics , Gastrointestinal Microbiome , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Rats , Antipyretics/pharmacology , Antipyretics/chemistry , Male , Fever/drug therapy , Metabolome/drug effects , Bile/metabolism , Bile/chemistry , Rats, Sprague-Dawley , Metabolomics , Signal Transduction/drug effects , Yeasts
6.
Front Psychol ; 15: 1464178, 2024.
Article in English | MEDLINE | ID: mdl-39135865

ABSTRACT

[This corrects the article DOI: 10.3389/fpsyg.2024.1363562.].

7.
Front Pharmacol ; 15: 1428558, 2024.
Article in English | MEDLINE | ID: mdl-39101136

ABSTRACT

Hyperuricemia (HUA) is a common chronic metabolic disease caused by abnormal purine metabolism and uric acid excretion. Despite extensive research on HUA, no clear treatment has been found so far. Improving purine metabolism and promoting uric acid excretion is crucial for the effective treatment of HUA. In recent years, traditional Chinese medicine and traditional Chinese medicine prescriptions have shown good effects in treating HUA. This article summarizes the latest progress in treating HUA in rats and mice using traditional Chinese medicine and prescriptions, elaborates on the pathogenesis of HUA, explores the application of commonly used traditional Chinese medicine treatment methods and prescriptions, and discusses the previous pharmacological mechanisms. In general, our research indicates that traditional Chinese medicine can effectively relieve the symptoms related to elevated uric acid levels in HUA rats and mice. However, further exploration and research are needed to verify its efficacy, safety, and feasibility.

8.
Molecules ; 29(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39202856

ABSTRACT

The Papaveraceae plant family serves as a botanical reservoir for a variety of medicinal compounds that have been traditionally utilized in Chinese medicine for numerous generations. Growing attention towards the pharmaceutical potential of Papaveraceae has resulted in the identification of many alkaloids, which have attracted significant attention from the scientific community because of their structural complexity and wide range of biological activities, such as analgesic, antihypertensive, antiarrhythmic, anti-inflammatory, antibacterial, anti-tumor, anti-cancer, and other activities, making them potential candidates for medical use. The primary objective of this review is to analyze the existing literature on the historical use of Papaveraceae plants, focusing on their alkaloid structures and relationship with pharmacological effects, as well as provide a theoretical basis for their clinical application, with the goal of unveiling the future potential of Papaveraceae plants.


Subject(s)
Alkaloids , Papaveraceae , Alkaloids/chemistry , Alkaloids/pharmacology , Humans , Papaveraceae/chemistry , China , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Animals , Medicine, Chinese Traditional , Molecular Structure , Structure-Activity Relationship
9.
J Affect Disord ; 366: 146-152, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39209276

ABSTRACT

BACKGROUND: The bidirectional relationship between cognitive function and depressive symptoms has been extensively reported. However, the potential mechanisms are still not clear. We aim to longitudinally investigate whether physical activity mediates the bidirectional relationships between cognitive function and specific dimensions of depressive symptoms. METHODS: Data from 6,787 individuals aged ≥50 of 2014/15 (T1), 2016/17 (T2), and 2018/19 (T3) waves of the English Longitudinal Study of Ageing (ELSA). Cognitive function was assessed by domains of memory, orientation in time, and executive function. Physical activity was measured with the intensity and frequency of participation. Specific dimensions of depressive symptoms were assessed by the 8-item Center for Epidemiologic Studies Depression Scale, distinguishing between cognitive-affective and somatic symptoms. Cross-lagged panel models were used to investigate the mediating role of physical activity in the bidirectional relationships between cognitive function and two dimensions of depressive symptoms. RESULTS: Poorer cognitive function was indirectly associated with worse cognitive-affective symptoms (indirect effect = -0.002, 95%CI: -0.004, -0.001) through lower physical activity levels. Poorer cognitive function was also indirectly associated with worse somatic symptoms (indirect effect = -0.003, 95%CI: -0.006, -0.002) through lower physical activity levels, and the reverse mediation was observed as well (indirect effect = -0.002, 95%CI: -0.004, -0.001). LIMITATIONS: There is no distinction between potential within-person and between-person effects. CONCLUSIONS: Collaborative interventions of physical activity are beneficial in protecting cognitive function and mental health in older adults.


Subject(s)
Cognition , Depression , Exercise , Humans , Female , Longitudinal Studies , Male , Exercise/psychology , Depression/psychology , Aged , Middle Aged , Cognition/physiology , Cognitive Dysfunction/physiopathology , Executive Function/physiology , Aging/psychology , Aging/physiology , Aged, 80 and over
10.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999021

ABSTRACT

Cancer represents one of the most significant health challenges currently facing humanity, and plant-derived antitumour drugs represent a prominent class of anticancer medications in clinical practice. Isovaleryl sucrose esters, which are natural constituents, have been identified as having potential antitumour effects. However, the mechanism of action remains unclear. In this study, 12 isovaleryl sucrose ester components, including five new (1-5) and seven known compounds (6-12), were isolated from the roots of Atractylodes japonica. The structures of the compounds were elucidated using 1D and 2D-NMR spectroscopy, complemented by HR-ESI-MS mass spectrometry. The cytotoxic activities of all the compounds against human colon cancer cells (HCT-116) and human lung adenocarcinoma cells (A549) were also evaluated using the CCK8 assay. The results demonstrated that compounds 2, 4, and 6 were moderately inhibitory to HCT-116 cells, with IC50 values of 7.49 ± 0.48, 9.03 ± 0.21, and 13.49 ± 1.45 µM, respectively. Compounds 1 and 6 were moderately inhibitory to A549, with IC50 values of 8.36 ± 0.77 and 7.10 ± 0.52 µM, respectively. Molecular docking revealed that compounds 1-9 exhibited a stronger affinity for FGFR3 and BRAF, with binding energies below -7 kcal/mol. Compound 2 exhibited the lowest binding energy of -10.63 kcal/mol to FGFR3. We screened the compounds with lower binding energies, and the protein-ligand complexes already obtained after molecular docking were subjected to exhaustive molecular dynamics simulation experiments, which simulated the dynamic behaviour of the molecules in close proximity to the actual biological environment, thus providing a deeper understanding of their functions and interaction mechanisms. The present study provides a reference for the development and use of iso-valeryl sucrose esters in the antitumour field.


Subject(s)
Atractylodes , Esters , Molecular Docking Simulation , Sucrose , Humans , Sucrose/chemistry , Sucrose/analogs & derivatives , Sucrose/pharmacology , Esters/chemistry , Esters/pharmacology , Atractylodes/chemistry , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , HCT116 Cells , Cell Line, Tumor , Plant Extracts/chemistry , Plant Extracts/pharmacology , A549 Cells , Molecular Dynamics Simulation , Cell Proliferation/drug effects
11.
Mol Ther Oncol ; 32(3): 200827, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39027379

ABSTRACT

Inadequate antigen-specific T cells activation hampers immunotherapy due to complex antigen presentation. In addition, therapeutic in vivo T cell expansion is constrained by slow expansion rates and limited functionality. Herein, we introduce a model fusion protein termed antigen-presenting cell-mimic fusion protein (APC-mimic), designed to greatly mimicking the natural antigen presentation pattern of antigen-presenting cells and directly expand T cells both in vitro and in vivo. The APC-mimic comprises the cognate peptide-human leukocyte antigen (pHLA) complex and the co-stimulatory marker CD80, which are natural ligands on APCs. Following a single stimulation, APC-mimic leads to an approximately 400-fold increase in the polyclonal expansion of antigen-specific T cells compared with the untreated group in vitro without the requirement for specialized antigen-presenting cells. Through the combination of single-cell TCR sequencing (scTCR-seq) and single-cell RNA sequencing (scRNA-seq), we identify an approximately 600-fold monoclonal expansion clonotype among these polyclonal clonotypes. It also exhibits suitability for in vivo applications confirmed in the OT-1 mouse model. Furthermore, T cells expanded by APC-mimic effectively inhibits tumor growth in adoptive cell transfer (ACT) murine models. These findings pave the way for the versatile APC-mimic platform for personalized therapeutics, enabling direct expansion of polyfunctional antigen-specific T cell subsets in vitro and in vivo.

12.
Molecules ; 29(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38999057

ABSTRACT

Porphyra haitanensis (P. haitanensis), an important food source for coastal residents in China, has a long history of medicinal and edible value. P. haitanensis polysaccharides are some of the main active ingredients in P. haitanensis. It is worth noting that P. haitanensis polysaccharides have a surprising and satisfactory biological activity, which explains the various benefits of P. haitanensis to human health, such as anti-oxidation, immune regulation, anti-allergy, and anticancer properties. Hence, a systematic review aimed at comprehensively summarizing the recent research advances in P. haitanensis polysaccharides is necessary for promoting their better understanding. In this review, we systematically and comprehensively summarize the research progress on the extraction, purification, structural characterization, modification, and biological activity of P. haitanensis polysaccharides and address the shortcomings of the published research and suggest area of focus for future research, providing a new reference for the exploitation of polysaccharides from P. haitanensis in the fields of medicine and functional foods.


Subject(s)
Polysaccharides , Porphyra , Porphyra/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification
13.
Antioxidants (Basel) ; 13(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38929125

ABSTRACT

The human body comprises numerous organs and tissues operating in synchrony, it facilitates metabolism, circulation, and overall organismal function. Consequently, the well-being of our organs and tissues significantly influences our overall health. In recent years, research on the protective effects of artesunate (AS) on various organ functions, including the heart, liver, brain, lungs, kidneys, gastrointestinal tract, bones, and others has witnessed significant advancements. Findings from in vivo and in vitro studies suggest that AS may emerge as a newfound guardian against organ damage. Its protective mechanisms primarily entail the inhibition of inflammatory factors and affect anti-fibrotic, anti-aging, immune-enhancing, modulation of stem cells, apoptosis, metabolic homeostasis, and autophagy properties. Moreover, AS is attracting a high level of interest because of its obvious antioxidant activities, including the activation of Nrf2 and HO-1 signaling pathways, inhibiting the release of reactive oxygen species, and interfering with the expression of genes and proteins associated with oxidative stress. This review comprehensively outlines the recent strides made by AS in alleviating organismal injuries stemming from various causes and protecting organs, aiming to serve as a reference for further in-depth research and utilization of AS.

14.
J Mater Chem B ; 12(28): 6917-6926, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38904147

ABSTRACT

Improving the regenerative ability of senescent stem cells is a critical issue in combating aging. The destiny and function of senescent stem cells are controlled by the niche, including the physical architecture of the surface of the extracellular matrix (ECM). In this study, we explored the functions of TiO2 nanotube topography on mesenchymal stem cells (MSCs) under senescence, as well as its mechanical effects on senescence. First, we created different nanotube topographies on the titanium samples. Next, we cultured senescent mesenchymal stem cells (S-MSCs) on samples with various nanotube topographies to determine suitable parameters. We found nanotube with a diameter of 10 nm significantly alleviated the cellular senescence of S-MSCs and improved the osteogenic differentiation of S-MSCs in vitro. Using an ectopic periodontium regeneration model, we confirmed that specific nanotube topography could promote tissue regeneration of S-MSCs in vivo. Moreover, we demonstrated that nanotube topography activated YAP in S-MSCs and reformed nuclear-cytoskeletal morphology to inhibit senescence. Taken together, our study establishes a bridge linking between nano-topography, mechanics, and senescence, suggesting a potential strategy to improve tissue regeneration in aged individuals by providing optimized surface topography on biomaterials.


Subject(s)
Cellular Senescence , Mesenchymal Stem Cells , Nanotubes , Signal Transduction , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cellular Senescence/drug effects , Nanotubes/chemistry , Animals , Titanium/chemistry , Titanium/pharmacology , Humans , Surface Properties , Cells, Cultured , YAP-Signaling Proteins/metabolism , Osteogenesis/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation/drug effects , Mice , Transcription Factors/metabolism
15.
Eur J Pharmacol ; 974: 176631, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38692425

ABSTRACT

OBJECTIVE: Dasatinib and quercetin (D & Q) have demonstrated promise in improving aged-related pathophysiological dysfunctions in humans and mice. Herein we aimed to ascertain whether the heat stress (HS)-induced cognitive deficits in aged or even young adult male mice can be reduced by D & Q therapy. METHODS: Before the onset of HS, animals were pre-treated with D & Q or placebo for 3 consecutive days every 2 weeks over a 10-week period. Cognitive function, intestinal barrier permeability, and blood-brain barrier permeability were assessed. RESULTS: Compared to the non-HS young adult male mice, the HS young adult male mice or the aged male mice had significantly lesser extents of the exacerbated stress reactions, intestinal barrier disruption, endotoxemia, systemic inflammation and oxidative stress, blood-brain barrier disruption, hippocampal inflammation and oxidative stress, and cognitive deficits evaluated at 7 days post-HS. All the cognitive deficits and other syndromes that occurred in young adult HS mice or in aged HS mice were significantly attenuated by D & Q therapy (P < 0.01). Compared to the young adult HS mice, the aged HS mice had significantly (P < 0.01) higher severity of cognitive deficits and other related syndromes. CONCLUSIONS: First, our data show that aged male mice are more vulnerable to HS-induced cognitive deficits than those of the young adult male mice. Second, we demonstrate that a combination of D and Q therapy attenuates cognitive deficits in heat stressed aged or young adult male mice via broad normalization of the brain-gut-endotoxin axis function.


Subject(s)
Blood-Brain Barrier , Dasatinib , Oxidative Stress , Quercetin , Animals , Male , Dasatinib/pharmacology , Dasatinib/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Mice , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Oxidative Stress/drug effects , Aging/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Heat-Shock Response/drug effects , Permeability/drug effects , Drug Therapy, Combination , Hippocampus/drug effects , Hippocampus/metabolism , Cognition/drug effects
16.
Org Biomol Chem ; 22(22): 4516-4520, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38747903

ABSTRACT

By employing [IrCp*Cl2]2/Mg(OMe)2/(CH2O)n as an applicable catalyst system, we report a reductive ß-alkylation of (iso)quinolinium salts with cost-effective and readily available ß-chloro ketones, proceeding with good chemoselectivity, mild reaction conditions, and without the need for introduction of a substituent at position-3 of the quinolyl skeleton. Mechanistic investigations suggest that the reaction proceeds via a sequence of hydride transfer-initiated dearomatization of (iso)quinolinium salts, in situ enamine-trapping of enone and a second round of hydride transfer to the coupling adducts. The present work offers an important complement to the synthesis of functionalized (iso)tetrahydroquinolines.

17.
Int J Biol Macromol ; 271(Pt 1): 132617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795891

ABSTRACT

Platycodon grandiflorum (P. grandiflorum) has long been used as a food and traditional herbal medicine. As a food, P. grandiflorum is often transformed into pickles for consumption, and as a traditional Chinese medicine, P. grandiflorum clears the lung, nourishes the pharynx, dispels phlegm, and discharges pus. Polysaccharides are among the main active components of P. grandiflorum. Recent literature has described the preparation, identification, and pharmacological activity of these polysaccharides. Studies have shown that these polysaccharides exhibit a variety of significant biological effects in vitro and in vivo, such as immune stimulation and antioxidant, anti-liver injury, anti-apoptosis and antitumour effects. However, there is no systematic summary of the related research articles on P. grandiflorum polysaccharide, which undoubtedly brings some difficulties to the future research. The purpose of this review is to comprehensively describe research progress on the extraction, purification, structural characterization, modification, and biological activity of P. grandiflorum polysaccharides. The shortcomings of recent research are summarized, further research on their biological activity is proposed to provide new reference value for the application of P. grandiflorum polysaccharides in drugs and health products in the future.


Subject(s)
Platycodon , Polysaccharides , Platycodon/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Humans , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology
19.
Anal Bioanal Chem ; 416(17): 3923-3944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705905

ABSTRACT

Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Biosensing Techniques/methods , Luminescence , Animals , Peptides/chemistry , DNA/chemistry , Proteins/chemistry , Luminescent Agents/chemistry , Amino Acids/chemistry
20.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675535

ABSTRACT

Moslae Herba (MH) can be used for both medicine and food and has a long history of medicine. MH has the effects of sweating and relieving the exterior, removing dampness and harmonizing, and is mainly used for colds caused by damp heat in summer. It is called "Xiayue Zhi Mahuang" in China. So far, 123 chemical compounds have been isolated and identified from MH, including flavonoids, terpenoids, phenolic acids, phenylpropanoids, and other chemical compounds. Its chemical components have a wide range of pharmacological activities, including antibacterial, antiviral, anti-inflammatory, antioxidant, analgesic sedation, antipyretic, immune regulation, insecticidal, and other effects. In addition, because of its aromatic odor and health care function, MH also has development and utilization value in food, chemical, and other fields. This paper reviewed the research progress of MH in botany, traditional uses, phytochemistry, and pharmacology and provided a possible direction for further research.


Subject(s)
Medicine, Chinese Traditional , Phytochemicals , Animals , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL