Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Appl Opt ; 63(11): 2950-2956, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38856393

ABSTRACT

We propose a low loss, wideband silicon transverse magnetic (TM) polarizer with high polarization extinction ratio and low reflection based on subwavelength grating. By arranging and optimizing a mutually perpendicular subwavelength grating with different duty cycles as the core and cladding, efficient waveguiding and radiation can be achieved for the TM and transverse electric (TE) injection, respectively. In simulation, the proposed TM polarizer has a footprint of 40µm×16.68µm, an insertion loss <0.7d B, a polarization extinction ratio ≥20d B, and an unwanted TE reflection <-17.4d B in the wavelength range of 1230-1700 nm. Moreover, the fabrication tolerance of the proposed device is also investigated.

2.
Sci China Life Sci ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38679670

ABSTRACT

Betaine-homocysteine methyltransferase (BHMT) regulates protein methylation and is correlated with tumorigenesis; however, the effects and regulation of BHMT in hepatocarcinogenesis remain largely unexplored. Here, we determined the clinical significance of BHMT in the occurrence and progression of hepatocellular carcinoma (HCC) using tissue samples from 198 patients. BHMT was to be frequently found (86.6%) expressed at relatively low levels in HCC tissues and was positively correlated with the overall survival of patients with HCC. Bhmt overexpression effectively suppressed several malignant phenotypes in hepatoma cells in vitro and in vivo, whereas complete knockout of Bhmt (Bhmt-/-) produced the opposite effect. We combined proteomics, metabolomics, and molecular biological strategies and detected that Bhmt-/- promoted hepatocarcinogenesis and tumor progression by enhancing the activity of glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolism in DEN-induced HCC mouse and subcutaneous tumor-bearing models. In contrast, restoration of Bhmt with an AAV8-Bhmt injection or pharmacological inhibition of G6PD attenuated hepatocarcinogenesis. Additionally, coimmunoprecipitation identified monomethylated modifications of the G6PD, and BHMT regulated the methylation of G6PD. Protein sequence analysis, generation and application of specific antibodies, and site-directed mutagenesis indicated G6PD methylation at the arginine residue 246. Furthermore, we established bidirectionally regulated BHMT cellular models combined with methylation-deficient G6PD mutants to demonstrate that BHMT potentiated arginine methylation of G6PD, thereby inhibiting G6PD activity, which in turn suppressed hepatocarcinogenesis. Taken together, this study reveals a new methylation-regulatory mechanism in hepatocarcinogenesis owing to BHMT deficiency, suggesting a potential therapeutic strategy for HCC treatment.

3.
bioRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496556

ABSTRACT

Potential systemic factors contributing to aging-associated breast cancer (BC) remain elusive. Here, we reveal that the polyploid giant cells (PGCs) that contain more than two sets of genomes prevailing in aging and cancerous tissues constitute 5-10% of healthy female bone marrow mesenchymal stromal cells (fBMSCs). The PGCs can repair DNA damage and stimulate neighboring cells for clonal expansion. However, dying PGCs in advanced-senescent fBMSCs can form "spikings" which are then separated into membraned mtDNA-containing vesicles (Senescent PGC-Spiking Bodies; SPSBs). SPSB-phagocytosed macrophages accelerate aging with diminished clearance on BC cells and protumor M2 polarization. SPSB-carried mitochondrial OXPHOS components are enriched in BC of elder patients and associated with poor prognosis. SPSB-incorporated breast epithelial cells develop aggressive characteristics and PGCs resembling the polyploid giant cancer cells (PGCCs) in clonogenic BC cells and cancer tissues. These findings highlight an aging BMSC-induced BC risk mediated by SPSB-induced macrophage dysfunction and epithelial cell precancerous transition. SIGNIFICANCE: Mechanisms underlying aging-associated cancer risk remain unelucidated. This work demonstrates that polyploid giant cells (PGCs) in bone marrow mesenchymal stromal cells (BMSCs) from healthy female bone marrow donors can boost neighboring cell proliferation for clonal expansion. However, the dying-senescent PGCs in the advanced-senescent fBMSCs can form "spikings" which are separated into mitochondrial DNA (mtDNA)-containing spiking bodies (senescent PGC-spiking bodies; SPSBs). The SPSBs promote macrophage aging and breast epithelial cell protumorigenic transition and form polyploid giant cancer cells. These results demonstrate a new form of ghost message from dying-senescent BMSCs, that may serve as a systemic factor contributing to aging-associated immunosuppression and breast cancer risk.

4.
Front Cell Dev Biol ; 12: 1259037, 2024.
Article in English | MEDLINE | ID: mdl-38385029

ABSTRACT

Macrophages can exhibit pro-inflammatory or pro-reparatory functions, contingent upon their specific activation state. This dynamic behavior empowers macrophages to engage in immune reactions and contribute to tissue homeostasis. Understanding the intricate interplay between macrophage motility and activation status provides valuable insights into the complex mechanisms that govern their diverse functions. In a recent study, we developed a classification method based on morphology, which demonstrated that movement characteristics, including speed and displacement, can serve as distinguishing factors for macrophage subtypes. In this study, we develop a deep learning model to explore the potential of classifying macrophage subtypes based solely on raw trajectory patterns. The classification model relies on the time series of x-y coordinates, as well as the distance traveled and net displacement. We begin by investigating the migratory patterns of macrophages to gain a deeper understanding of their behavior. Although this analysis does not directly inform the deep learning model, it serves to highlight the intricate and distinct dynamics exhibited by different macrophage subtypes, which cannot be easily captured by a finite set of motility metrics. Our study uses cell trajectories to classify three macrophage subtypes: M0, M1, and M2. This advancement holds promising implications for the future, as it suggests the possibility of identifying macrophage subtypes without relying on shape analysis. Consequently, it could potentially eliminate the necessity for high-quality imaging techniques and provide more robust methods for analyzing inherently blurry images.

5.
Cell Biol Int ; 48(1): 31-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37655528

ABSTRACT

Arachidonic acid metabolism plays a crucial role in the development and progression of inflammatory and metabolic liver diseases. However, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated the expression of key genes involved in the arachidonic acid metabolism pathway in HCC using a combination of bioinformatics, proteomics and immunohistochemistry analyses. Through a comprehensive analysis of publicly available datasets, clinical HCC tissues, and tissue microarrays, we compared the expression of hepatic arachidonic acid metabolic genes. We observed significant downregulation of cytochrome P450 (CYP450) pathway genes at both the messenger RNA and protein levels in HCC tissues compared to normal liver tissues. Furthermore, we observed a strong correlation between the deregulation of the arachidonic acid metabolism CYP450 pathway and the pathological features and prognosis of HCC. Specifically, the expression of CYP2C8/9/18/19 was significantly correlated with pathological grade (r = -.484, p < .0001), vascular invasion (r = -.402, p < .0001), aspartate transaminase (r = -.246, p = .025), gamma-glutamyl transpeptidase (r = -.252, p = .022), alkaline phosphatase (r = -.342, p = .002), alpha-fetoprotein (r = -.311, p = .004) and carbohydrate antigen 19-9 (r = -.227, p = .047). Moreover, we discovered a significant association between CYP450 pathway activity and vascular invasion in HCC. Collectively, these data indicate that arachidonic acid CYP450 metabolic pathway deregulation is implicated in HCC progression and may be a potential predictive factor for early recurrence in patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Arachidonic Acid , Cytochrome P-450 Enzyme System/genetics
6.
Cell Rep ; 42(12): 113505, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38041810

ABSTRACT

The composite material-like extracellular matrix (ECM) in the sinoatrial node (SAN) supports the native pacemaking cardiomyocytes (PCMs). To test the roles of SAN ECM in the PCM phenotype and function, we engineered reconstructed-SAN heart tissues (rSANHTs) by recellularizing porcine SAN ECMs with hiPSC-derived PCMs. The hiPSC-PCMs in rSANHTs self-organized into clusters resembling the native SAN and displayed higher expression of pacemaker-specific genes and a faster automaticity compared with PCMs in reconstructed-left ventricular heart tissues (rLVHTs). To test the protective nature of SAN ECMs under strain, rSANHTs and rLVHTs were transplanted onto the murine thoracic diaphragm to undergo constant cyclic strain. All strained-rSANHTs preserved automaticity, whereas 66% of strained-rLVHTs lost their automaticity. In contrast to the strained-rLVHTs, PCMs in strained-rSANHTs maintained high expression of key pacemaker genes (HCN4, TBX3, and TBX18). These findings highlight the promotive and protective roles of the composite SAN ECM and provide valuable insights for pacemaking tissue engineering.


Subject(s)
Myocytes, Cardiac , Sinoatrial Node , Mice , Animals , Swine , Myocytes, Cardiac/metabolism , Heart Ventricles , Phenotype
7.
Int J Biol Macromol ; 253(Pt 1): 126458, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37619681

ABSTRACT

This paper presents the first investigation of the adsorption performance of methylene blue by the nitro-functionalized metal-organic framework (MIL-88B-NO2). MIL-88B-NO2 has a specific surface area of 836.0 m2/g, which is 109.8 % higher than MIL-88B. The maximum adsorption capacity of methylene blue is 383.6 mg/g, which is 68.2 % higher than that of MIL-88B. This phenomenon can be attributed to the great increase in specific surface area and the introduction of nitro-functional groups. However, its microcrystalline nature makes it difficult to remove in practical applications and quickly causes secondary pollution. Therefore, the composite of MIL-88B-NO2 and calcium alginate (CA) to form aerogel maintains the inherent properties of the two materials and makes it easy to recycle. The utmost adsorption capability of MIL-88B-NO2/CA-2 aerogel is 721.0 mg/g. Compared with MIL-88B-NO2, the adsorption performance of MIL-88B-NO2/CA-2 aerogel is further improved by 88.0 %. The higher adsorption capacity of the adsorbent may be due to the synergistic interplay of electrostatic attraction, π-π conjugation, hydrogen bonding, metal coordination effect, and physicochemical properties. Also, MIL-88B-NO2/CA-2 aerogel has good recyclability, indicating that it has broad application prospects in the removal of positive dyes in contaminated water.


Subject(s)
Methylene Blue , Water , Adsorption , Water/chemistry , Nitrogen Dioxide , Metals , Radiopharmaceuticals , Skeleton
8.
Int J Biol Macromol ; 252: 126198, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37586626

ABSTRACT

Micro-nano metal-organic framework (MIL-68(Fe)) for efficient adsorption of azo anionic dye Congo red (CR) was successfully prepared by one-step hydrothermal method under acidic environment. And a MIL-68(Fe)/chitosan composite sponge (MIL-68(Fe)/CS) was prepared under the coating of chitosan (CS). After comparing the performance of MIL-68(Fe) and MIL-68(Fe)/CS, we focus on exploring MIL-68(Fe)/CS. It ensured the CR removal efficiency while reaching the adsorption equilibrium faster than MIL-68(Fe), and solved the defect that the powder was difficult to be stripped by water after adsorption. The physicochemical properties and surface morphology of the adsorbent were characterized by SEM, FTIR, XRD, TGA, BET, and Zeta potential. The effects of pH, contact time, adsorbent dosage, initial solution concentration and temperature on the adsorption performance of the adsorbent were systematically analyzed. The pseudo-second-order model and the Sips model were most consistent for the adsorption process, indicating that the adsorption process of MIL-68(Fe)/chitosan composite sponge on CR is a complex physicochemical process. The removal rates of CR by MIL-68(Fe) and MIL-68(Fe)/chitosan composite sponge reached the maximum values of 99.55 % and 99.51 % at 318 K, respectively. And the maximum adsorption capacity of CR by MIL-68(Fe)/chitosan composite sponge at 318 K was 1184.16 mg·g-1. After six cycles of adsorption and desorption, the removal rate of CR was still higher than 80 %. The synergistic effects of π-π stacking, electrostatic interactions, hydrogen bonding and pore filling have important effects on CR removal.


Subject(s)
Chitosan , Metal-Organic Frameworks , Water Pollutants, Chemical , Congo Red , Chitosan/chemistry , Adsorption , Azo Compounds , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration
9.
Langmuir ; 39(30): 10611-10624, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37470723

ABSTRACT

In this paper, the physicochemical properties, surface charge, and crystal defects of MIL-88A (Al) were controlled by adjusting the ratio of metal ligands and temperature in the synthetic system without the addition of surfactants. The adsorption properties of different crystals for Congo red (CR) were studied. Among them, MIL-88A (Al)-130 and MIL-88A (Al)-d have the best adsorption properties. The maximum adsorption capacities are 600.8 and 1167 mg · g-1, respectively. Compared with MIL-88A (Al)-130, the adsorption performance of MIL-88A (Al)-d was increased by 94.2%, and the adsorption rate was increased by about 4 times. It can be seen that increasing the proportion of metal ligands within a certain range will improve the adsorption capacity. The structure and morphology of the adsorbent were characterized by XRD, FTIR, SEM, EDS, TGA, BET, and zeta potential. The effects of time, temperature, pH, initial solution concentration, and dosage on CR adsorption properties were systematically discussed. The pseudo-second-order kinetic model and Langmuir isothermal model can well describe the adsorption process, which indicates that the adsorption process is a single-layer chemisorption occurring on a uniform surface. According to thermodynamics, this adsorption is an endothermic process. The mechanism of CR removal is proposed as the electrostatic attraction, hydrogen bond, metal coordination effect, π-π conjugation, crystal defect, and pore-filling effect. In addition, MIL-88A (Al)-d has good repeatability, indicating that it is a good material for treating anionic dye wastewater.

10.
STAR Protoc ; 4(2): 102288, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149857

ABSTRACT

Here, we present a protocol for electrotaxis of large epithelial cell sheets without compromising the integrity of cell epithelia in a high-throughput customized directed current electrotaxis chamber. We describe the fabrication and use of polydimethylsiloxane stencils to control the size and shape of human keratinocyte cell sheets. We detail cell tracking, cell sheet contour assay, and particle image velocimetry to reveal the spatial and temporal motility dynamics of cell sheets. This approach is applicable to other collective cell migration studies. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.

11.
Int J Biol Macromol ; 242(Pt 1): 124683, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37141973

ABSTRACT

A chitosan/alginate/graphene oxide/UiO-67 (CS/SA/GO/UiO-67) amphoteric aerogel was synthesized successfully. A series of characterization experiments of CS/SA/GO/UiO-67 amphoteric aerogel was performed by SEM, EDS, FT-IR, TGA, XRD, BET, and zeta potential. The competitive adsorption properties of different adsorbents for complex dyes wastewater (MB and CR) at room temperature (298 K) were compared. Langmuir isotherm model predicted that the maximum adsorption quantity of CS/SA/GO/UiO-67 for CR and MB was 1091.61 and 1313.95 mg/g, respectively. The optimum pH values of CS/SA/GO/UiO-67 for the adsorption of CR and MB were 5 and 10, respectively. The kinetic analysis showed that the adsorption of MB and CR on CS/SA/GO/UiO-67 was more suitable for the pseudo-second-order and pseudo-first-order kinetic model, respectively. The isotherm study revealed that the adsorption of MB and CR was consistent with the Langmuir isotherm model. The thermodynamic study demonstrated that the adsorption process of MB and CR was exothermic and spontaneous. FT-IR analysis and zeta potential characterization experiments revealed that the adsorption mechanism of MB and CR on CS/SA/GO/UiO-67 depended on π-π bond, hydrogen bond, and electrostatic attraction. Repeatable experiments showed that the removal rates of MB and CR of CS/SA/GO/UiO-67 after six cycles of adsorption were 67.19 and 60.82 %, respectively.


Subject(s)
Chitosan , Coloring Agents , Coloring Agents/chemistry , Chitosan/chemistry , Spectroscopy, Fourier Transform Infrared , Adsorption , Alginates , Kinetics
12.
Mol Carcinog ; 62(7): 963-974, 2023 07.
Article in English | MEDLINE | ID: mdl-37042569

ABSTRACT

Abnormal cholesterol synthesis plays a crucial role in the development of hepatocellular carcinoma (HCC). Sterol regulatory element-binding protein 2 (SREBP2) is involved in cholesterol synthesis by translocating to the nucleus where it stimulates the transcription of genes encoding enzymes involved in the cholesterol synthesis pathway. However, the function and regulatory mechanism of SREBP2 in HCC remain unclear. In this study, we aimed to gain a better understanding of the effects of SREBP2 and its functional mechanism in HCC. In 20 HCC patients, we demonstrated that SREBP2 was highly expressed in HCC specimens, relative to their peritumoral tissue, and that higher expression correlated positively with a poor prognosis in these patients. Moreover, higher SREBP2 levels in the nucleus enhanced the occurrence of microvascular invasion, whereas inhibition of SREBP2 nuclear translocation by fatostatin markedly suppressed the migration and invasion of HCC cells via the epithelial-mesenchymal transition (EMT) process. The effects of SREBP2 were subject to functional activity of large tumor suppressor kinase (LATS), whereas inhibition of LATS promoted nuclear translocation of SREBP2, as observed in hepatoma cells and a subset of subcutaneous tumor samples from nude mice. In conclusion, SREBP2 enhances the invasion and metastasis of HCC cells by promoting EMT, which can be strengthened by the repression of LATS. Therefore, SREBP2 may serve as a novel therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Mice, Nude , Humans
13.
Int J Biol Macromol ; 238: 124044, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36933588

ABSTRACT

Zirconium alginate/graphene oxide (ZA/GO) hydrogel spheres were prepared by crosslinking sodium alginate and GO with Zr4+. Then Zr4+ on the surface of the ZA/GO substrate acted as the metal nucleation site of the UiO-67 crystal and interacted with the organic ligand biphenyl 4-4'-dicarboxylic acid (BPDC) to make UiO-67 grow in situ on the surface of the ZA/GO hydrogel sphere by the hydrothermal method. The BET surface areas of ZA/GO, ZA/UiO-67, and ZA/GO/UiO-67 aerogel spheres were 1.29, 47.71, and 89.33 m2/g respectively. The maximum adsorption capacities of ZA/GO, ZA/UiO-67, and ZA/GO/UiO-67 aerogel spheres for methylene blue (MB) at room temperature (298 K) were 145.08, 307.49, and 1105.23 mg/g respectively. The kinetic analysis showed that the adsorption process of MB on the ZA/GO/UiO-67 aerogel sphere was consistent with the pseudo-first-order kinetic model. Isotherm analysis showed that MB was adsorbed on ZA/GO/UiO-67 aerogel spheres as a single layer. Thermodynamic analysis showed that the adsorption process of MB on the ZA/GO/UiO-67 aerogel sphere was exothermic and spontaneous. Adsorption of MB on ZA/GO/UiO-67 aerogel spheres is mainly dependent on π-π bond, electrostatic interaction, and hydrogen bond. After 8 cycles, ZA/GO/UiO-67 aerogel spheres still showed high adsorption performance and good reuse ability.


Subject(s)
Graphite , Water Pollutants, Chemical , Methylene Blue/chemistry , Kinetics , Adsorption , Alginates/chemistry , Water Pollutants, Chemical/chemistry , Graphite/chemistry , Hydrogels
14.
Mol Biol Cell ; 34(5): ar48, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36989037

ABSTRACT

Recent research has elucidated mechanochemical pathways of single cell polarization, but much less is known about collective motility initiation in adhesive cell groups. We used galvanotactic assays of zebrafish keratocyte cell groups, pharmacological perturbations, electric field switches, particle imaging velocimetry, and cell tracking to show that large cell groups initiate motility in minutes toward the cathode. Interestingly, while PI3K-inhibited single cells are biased toward the anode, inhibiting PI3K does not affect the cathode-directed cell group migration. We observed that control groups had the fastest cathode-migrating cell at the front, while the front cells in PI3K-inhibited groups were the slowest. Both control and PI3K-inhibited groups rapidly repolarized when the electric field direction was reversed, and the group migration continued after the electric field was switched off. Inhibiting myosin disrupted the cohesiveness of keratocyte groups and abolished the collective directionality and ability to switch direction when the electric field is reversed. Our data are consistent with a model according to which cells in the group sense the electric field individually and mechanical integration of the cells results in coherent group motility.


Subject(s)
Phosphatidylinositol 3-Kinases , Zebrafish , Animals , Cell Movement
15.
Int J Biol Macromol ; 239: 124157, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36965569

ABSTRACT

MIL-88A crystals with three different metal ligands (Fe, Al, FeAl) were prepared by hydrothermal method for the first time. The three materials' crystal structure and surface morphology are different, leading to different adsorption properties of Congo red (CR). The maximum adsorption capacities of MIL-88A (Fe), MIL-88A (FeAl), and MIL-88A (Al) are 607.7 mg · g-1, 536.4 mg · g-1, and 512.1 mg · g-1 respectively. In addition, MIL-88A was combined with chitosan (CS) respectively, and MIL-88A/CS composite sponge was prepared by the freeze-drying method, which not only solved the defect that MIL-88A powder was difficult to recover but also further improved the removal ability of CR by the adsorbent. The maximum adsorption capacities of MIL-88A (FeAl)/CS, MIL-88A (Fe)/CS, MIL-88A (Al)/CS, and CS are 1312 mg · g-1, 1056 mg · g-1, 996.7 mg · g-1, and 769.6 mg · g-1, respectively. The structure and physicochemical properties of the materials were analyzed by SEM, FTIR, XRD, TGA, BET, and Zeta. The adsorption process of CR follows pseudo-second-order kinetics and Langmuir, Sips isotherm model. Combined with thermodynamic parameters, the adsorption behavior was described as endothermic monomolecular chemical adsorption. The removal of CR is attributed to electrostatic interactions, hydrogen bonding, metal coordination effects, and size-matching effects.


Subject(s)
Chitosan , Water Pollutants, Chemical , Congo Red , Chitosan/chemistry , Adsorption , Thermodynamics , Water Pollutants, Chemical/chemistry , Kinetics
16.
Sci Rep ; 13(1): 1564, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36709370

ABSTRACT

To reduce the filling cost of high-water backfilling material (HWBM) in mining backfill and improve the recycling utilization of the industrial waste such as the coal fly ash. The ultra-fine fly ash (UFA) was added to the HWBM as a partial replacement in this work. Therefore, a series of experiments were performed to investigate the effect of UFA on the mechanical properties of the HWBM at the different curing conditions, then the hydration mechanism of the HWBM blended with UFA was analyzed by XRD and SEM method. The result indicates that the strength of the HWBM decreased with the increasing of UFA dosages, but the addition of UFA can improve the residual strength of the initial HWBM. Additionally, when the HWBM was cured at the laboratory air condition, its carbonation process was restrained obviously as the UFA dosages were less than 15% at the ages of 28 days, which indicates the UFA can improve the weathering resistance of the HWBM with the curing ages increasing effectively. The XRD and SEM results also shows that the degree of crystallinity of the HWBM increased when UFA dosages were less than 15% effectively, while there were few obvious changes on types of hydration products. It indicates that the main affects of UFA on the performance of HWBM is filler and dilution, which reduced the contact area between hydration products of HWBM and CO2 in the air, further improved the carbonation resistance of HWBM.

17.
ACS Omega ; 8(1): 857-867, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643493

ABSTRACT

In this study, composite hydrogels were prepared using a simple synthetic technique to adsorb methylene blue (MB) from water. The hydrogel comprised potassium persulfate (KPS) as the initiator, N,N'-methylene bisacrylamide as the crosslinking agent, and sodium hydroxide (NaOH) as the activator. It was employed to adsorb MB at different concentrations from water. The morphology and properties of PUL/PAM/GO composites were characterized through thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. Moreover, the adsorption properties, adsorption isotherms, adsorption kinetics, adsorption thermodynamics, and swelling properties of the hydrogel for MB were investigated. The optimal ratio of PUL to AC was obtained as 6:1 by fixing the amount of PUL and loading AC of different masses. The maximum adsorption capacity was obtained as 591.4 mg/g. It also exhibited certain mechanical strength. The adsorption of MB conforms to pseudo-first-order kinetics and Langmuir isotherms. In this study, an environment-friendly, cheap, simple, and efficient way was presented for the composite hydrogel in the direction of water treatment.

18.
ACS Omega ; 7(45): 41246-41255, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406510

ABSTRACT

It can be difficult to remove dark methylene blue (MB) from water effectively. The use of sodium alginate and bentonite (Ben) as the matrix produced a displacement reaction that occurred in cobalt chloride, which allowed Ben to be successfully encapsulated in cobalt alginate (CA). Finally, a vacuum freeze-drying method was used to prepare a low-cost composite of CA/Ben aerogel for adsorbing MB in aqueous solutions. In addition to scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy, the composites were also characterized and analyzed. Different adsorption experiments were conducted in order to determine the effects of dosage, pH, adsorption time, and temperature on the adsorption performance of the adsorbent. According to the results of the experiment, the adsorption capacity of CA/Ben aerogel was 258.92 mg·g-1, and the pseudo-first-order kinetic model and Freundlich isotherm model can fully explain the adsorption process of MB on this aerogel. The composite material reported in this paper is easily recycled, and the removal rate reaches 65% after four times of recycling. Moreover, compared with other adsorbents, the composite material of the invention is highly environmentally friendly and has a simple preparation process. A large-scale application of this technology is the removal of dyes from water on a large scale.

19.
iScience ; 25(10): 105136, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36185354

ABSTRACT

Directional migration initiated at the wound edge leads epithelia to migrate in wound healing. How such coherent migration is achieved is not well understood. Here, we used electric fields to induce robust migration of sheets of human keratinocytes and developed an in silico model to characterize initiation and propagation of epithelial collective migration. Electric fields initiate an increase in migration directionality and speed at the leading edge. The increases propagate across the epithelial sheets, resulting in directional migration of cell sheets as coherent units. Both the experimental and in silico models demonstrated vector-like integration of the electric and default directional cues at free edge in space and time. The resultant collective migration is consistent in experiments and modeling, both qualitatively and quantitatively. The keratinocyte model thus faithfully reflects key features of epithelial migration as a coherent tissue in vivo, e.g. that leading cells lead, and that epithelium maintains cell-cell junction.

20.
Nanomaterials (Basel) ; 12(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36079938

ABSTRACT

For nanomaterials, such as GO and MOF-525, aggregation is the main reason limiting their adsorption performance. In this research, Alg-Cu@GO@MOF-525 was successfully synthesized by in-situ growth of MOF-525 on Alg-Cu@GO. By dispersing graphene oxide (GO) with copper alginate (Alg-Cu) with three-dimensional structure, MOF-525 was in-situ grown to reduce aggregation. The measured specific surface area of Alg-Cu@GO@MOF-525 was as high as 807.30 m2·g-1, which is very favorable for adsorption. The synthesized material has affinity for a variety of pollutants, and its adsorption performance is significantly enhanced. In particular, tetracycline (TC) was selected as the target pollutant to study the adsorption behavior. The strong acid environment inhibited the adsorption, and the removal percentage reached 96.6% when pH was neutral. Temperature promoted the adsorption process, and 318 K adsorption performance was the best under experimental conditions. Meanwhile, 54.6% of TC could be removed in 38 min, and the maximum adsorption capacity reached 533 mg·g-1, far higher than that of conventional adsorption materials. Kinetics and isotherms analysis show that the adsorption process accords with Sips model and pseudo-second-order model. Thermodynamic study further shows that the chemisorption is spontaneous and exothermic. In addition, pore-filling, complexation, π-π stack, hydrogen bond and chemisorption are considered to be the causes of adsorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...