Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioresour Bioprocess ; 11(1): 68, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012554

ABSTRACT

To understand the ecology of species and promote biotechnology through beneficial strain selection for improving starch yield in maize wet-milling steeping, bacterial diversity and community structure during the counter-current steeping process in a commercial steeping system were characterized and investigated. The microbial diversity in the steeping liquor, which consisted of 16 phyla, 131 families, and 290 genera, was more abundant compared to those present on the surface of unsteeped maize. As the counter-current steeping progressed, exposing newer maize to the older steepwater, Lactobacillus dominated, replacing Rahnella, Pseudomonas, Pantoea, and Serratia. The thermophilic and acidophilic microbial consortia were enriched through adaptive evolution engineering and employed to improve starch yield. Several steeping strategies were evaluated, including water alone, SO2 alone, mono-culture of B. coagulans, microbial consortia, and a combination of consortium and SO2. Combining the microbial consortium with SO2 significantly increased the starch yield to, about 66.4 ± 0.5%, a 22% and 46% increase over SO2 alone and the consortium alone, respectively. Scanning electron microscope (SEM) of steeped maize structure indicated that the combination of consortium and SO2 disrupted the protein matrix and widened gaps between starch granules in maize endosperm. This released proteins into the steepwater and left starch granules in the aleurone layer. The steeping strategy of using thermophilic and acidophilic microbial consortium as additives shows potential application as an environmentally friendly alternative to conventional maize steeping procedures.

2.
Nat Commun ; 15(1): 4237, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762492

ABSTRACT

Immune checkpoint inhibition targeting the PD-1/PD-L1 pathway has become a powerful clinical strategy for treating cancer, but its efficacy is complicated by various resistance mechanisms. One of the reasons for the resistance is the internalization and recycling of PD-L1 itself upon antibody binding. The inhibition of lysosome-mediated degradation of PD-L1 is critical for preserving the amount of PD-L1 recycling back to the cell membrane. In this study, we find that Hsc70 promotes PD-L1 degradation through the endosome-lysosome pathway and reduces PD-L1 recycling to the cell membrane. This effect is dependent on Hsc70-PD-L1 binding which inhibits the CMTM6-PD-L1 interaction. We further identify an Hsp90α/ß inhibitor, AUY-922, which induces Hsc70 expression and PD-L1 lysosomal degradation. Either Hsc70 overexpression or AUY-922 treatment can reduce PD-L1 expression, inhibit tumor growth and promote anti-tumor immunity in female mice; AUY-922 can further enhance the anti-tumor efficacy of anti-PD-L1 and anti-CTLA4 treatment. Our study elucidates a molecular mechanism of Hsc70-mediated PD-L1 lysosomal degradation and provides a target and therapeutic strategies for tumor immunotherapy.


Subject(s)
B7-H1 Antigen , HSC70 Heat-Shock Proteins , Lysosomes , HSC70 Heat-Shock Proteins/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lysosomes/metabolism , Animals , Mice , Humans , Female , Cell Line, Tumor , Proteolysis , Endosomes/metabolism , Neoplasms/immunology , Neoplasms/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Mice, Inbred C57BL , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cell Membrane/metabolism , Myelin Proteins , MARVEL Domain-Containing Proteins
3.
Bioresour Bioprocess ; 11(1): 44, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722416

ABSTRACT

As an alternative to antibiotics in response to antimicrobial-resistant infections, bacteriophages (phages) are garnering renewed interest in recent years. However, the massive preparation of phage is restricted using traditional pathogens as host cells, which incurs additional costs and contamination. In this study, an opportunistic pathogen, Klebsiella pneumoniae used to convert glycerol to 1,3-propanediol (1,3-PDO), was reused to prepare phage after fermentation. The phage infection showed that the fed-batch fermentation broth containing 71.6 g/L 1,3-PDO can be directly used for preparation of phage with a titer of 1 × 108 pfu/mL. Then, the two-step salting-out extraction was adopted to remove most impurities, e.g. acetic acid (93.5%), ethanol (91.5%) and cells (99.4%) at the first step, and obtain 1,3-PDO (56.6%) in the top phase as well as phage (97.4%) in the middle phase at the second step. This integrated process provides a cheap and environment-friendly manner for coproduction of 1,3-PDO and phage.

4.
Bioresour Bioprocess ; 11(1): 17, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38647810

ABSTRACT

Cell immobilization plays an important role in biocatalysis for high-value products. It is necessary to maintain the viability of immobilized cells for bioconversion using viable cells as biocatalysts. In this study, a novel polyester nonwoven chemostat was designed for cell immobilization to investigate biofilm formation and the dynamic balance between adsorption and desorption of cells on polyester nonwoven. The polyester nonwoven was suitable for cell immobilization, and the cell numbers on the polyester nonwoven can reach 6.5 ± 0.38 log CFU/mL. After adding the polyester nonwoven to the chemostat, the fluctuation phenomenon of free bacterial cells occurred. The reason for this phenomenon was the balance between adsorption and desorption of bacterial cells on the polyester nonwoven. Bacterial cells could adhere to the surface of polyester nonwoven via secreting extracellular polymeric substances (EPS) to form biofilms. As the maturation of biofilms, some dead cells inside the biofilms can cause the detachment of biofilms. This process of continuous adsorption and desorption of cells can ensure that the polyester nonwoven chemostat has lasting biological activity.

5.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 908-920, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38545986

ABSTRACT

The utilization of industrial microorganisms for the conversion of lignocellulose into high value-added chemicals is an essential pathway towards achieving carbon neutrality and promoting sustainable bioeconomy. However, the pretreated lignocellulase hydrolysate often contains various sugars, salts, phenols/aldehydes and other substances, which requires microorganisms to possess strong tolerance for direct fermentation. This study aims to investigate the tolerance of Candida krusei to substrate, salt, and high temperature shock, in order to validate its potential for utilizing the enzymatic hydrolysate of Pennisetum giganteum in seawater for fermentation. The experimental results showed that the adaptively domesticated C. krusei exhibited tolerance to glucose at a concentration of 200 g/L and became a hypertonic strain. When seawater was used instead of freshwater without sterilization, the yield of glycerol in fermentation was 109% higher than that in freshwater with sterilization. Moreover, the combined thermal shock at 32 hours of fermentation and addition of 10 Na2SO3 at 48 hours resulted in a yield of glycerol to glucose 0.37 g/g, which was 225% higher than the control group. By fermenting the enzymatic hydrolysate of P. giganteum pretreated in seawater, the total conversion rate of glucose into glycerol and ethanol reached 0.45 g/g. This study indicates that hypertonic C. krusei exhibits remarkable adaptability to substrate, salt, and temperature. It not only can directly utilize complex lignocellulosic hydrolysates, but also exhibits strong tolerance to them. Therefore, it provides a potential candidate strain for the production of bio-based chemicals using lignocellulosic processes.


Subject(s)
Glycerol , Pichia , Pichia/metabolism , Fermentation , Glucose/metabolism , Xylose/metabolism
6.
Biotechnol Biofuels Bioprod ; 17(1): 38, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454489

ABSTRACT

BACKGROUND: Glycerol, as a by-product, mainly derives from the conversion of many crops to biodiesel, ethanol, and fatty ester. Its bioconversion to 1,3-propanediol (1,3-PDO) is an environmentally friendly method. Continuous fermentation has many striking merits over fed-batch and batch fermentation, such as high product concentration with easy feeding operation, long-term high productivity without frequent seed culture, and energy-intensive sterilization. However, it is usually difficult to harvest high product concentrations. RESULTS: In this study, a three-stage continuous fermentation was firstly designed to produce 1,3-PDO from crude glycerol by Clostridium butyricum, in which the first stage fermentation was responsible for providing the excellent cells in a robust growth state, the second stage focused on promoting 1,3-PDO production, and the third stage aimed to further boost the 1,3-PDO concentration and reduce the residual glycerol concentration as much as possible. Through the three-stage continuous fermentation, 80.05 g/L 1,3-PDO as the maximum concentration was produced while maintaining residual glycerol of 5.87 g/L, achieving a yield of 0.48 g/g and a productivity of 3.67 g/(L·h). Based on the 14 sets of experimental data from the first stage, a kinetic model was developed to describe the intricate relationships among the concentrations of 1,3-PDO, substrate, biomass, and butyrate. Subsequently, this kinetic model was used to optimize and predict the highest 1,3-PDO productivity of 11.26 g/(L·h) in the first stage fermentation, while the glycerol feeding concentration and dilution rate were determined to be 92 g/L and 0.341 h-1, separately. Additionally, to achieve a target 1,3-PDO production of 80 g/L without the third stage fermentation, the predicted minimum volume ratio of the second fermenter to the first one was 11.9. The kinetics-based two-stage continuous fermentation was experimentally verified well with the predicted results. CONCLUSION: A novel three-stage continuous fermentation and a kinetic model were reported. Then a simpler two-stage continuous fermentation was developed based on the optimization of the kinetic model. This kinetics-based development of two-stage continuous fermentation could achieve high-level production of 1,3-PDO. Meanwhile, it provides a reference for other bio-chemicals production by applying kinetics to optimize multi-stage continuous fermentation.

7.
FEBS Open Bio ; 14(4): 584-597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366735

ABSTRACT

Oleanolic acid (OA) is a pentacyclic triterpene with reported protective effects against various diseases, including diabetes, hepatitis, and different cancers. However, the effects of OA on obesity-induced muscle atrophy remain largely unknown. This study investigated the effects of OA on skeletal muscle production and proliferation of C2C12 cells. We report that OA significantly increased skeletal muscle mass and improved glucose intolerance and insulin resistance. OA inhibited dexamethasone (Dex)-induced muscle atrophy in C2C12 myoblasts by regulating the PI3K/Akt signaling pathway. In addition, it also inhibited expression of MuRF1 and Atrogin1 genes in skeletal muscle of obese mice suffering from muscle atrophy, and increased the activation of PI3K and Akt, thereby promoting protein synthesis, and eventually alleviating muscle atrophy. Taken together, these findings suggest OA may have potential for the prevention and treatment of muscle atrophy.


Subject(s)
Muscular Atrophy , Oleanolic Acid , Animals , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/drug therapy , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
8.
Acta Physiol (Oxf) ; 240(3): e14103, 2024 03.
Article in English | MEDLINE | ID: mdl-38288566

ABSTRACT

AIM: Exercise can reduce body weight and promote white fat browning, but the underlying mechanisms remain largely unknown. This study investigated the role of fibronectin type III domain-containing protein 5 (FNDC5)/Irisin, a hormone released from exercising muscle, in the browning of white fat in circulating extracellular vesicles (EVs). METHODS: Mice were subjected to a 4 weeks of running table exercise, and fat browning was analyzed via histology, protein blotting and qPCR. Circulating EVs were extracted by ultrahigh-speed centrifugation, and ELISA was used to measure the irisin concentration in the circulating EVs. Circulating EVs that differentially expressed irisin were applied to adipocytes, and the effect of EV-irisin on adipocyte energy metabolism was analyzed by immunofluorescence, protein blotting, and cellular oxygen consumption rate analysis. RESULTS: During sustained exercise, the mice lost weight and developed fat browning. FNDC5 was induced, cleaved, and secreted into irisin, and irisin levels subsequently increased in the plasma during exercise. Interestingly, irisin was highly expressed in circulating EVs that effectively promoted adipose browning. Mechanistically, the circulating EV-irisin complex is transported intracellularly by the adipocyte membrane receptor integrin αV, which in turn activates the AMPK signaling pathway, which is dependent on mitochondrial uncoupling protein 1 to cause mitochondrial plasmonic leakage and promote heat production. After inhibition of the AMPK signaling pathway, the effects of the EV-irisin on promoting fat browning were minimal. CONCLUSION: Exercise leads to the accumulation of circulating EV-irisin, which enhances adipose energy metabolism and thermogenesis and promotes white fat browning in mice, leading to weight loss.


Subject(s)
Extracellular Vesicles , Fibronectins , Mice , Animals , Fibronectins/metabolism , AMP-Activated Protein Kinases/metabolism , Adipose Tissue, White , Obesity/metabolism , Transcription Factors/metabolism , Thermogenesis , Extracellular Vesicles/metabolism , Adipose Tissue, Brown
9.
Mycorrhiza ; 34(1-2): 131-143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38129688

ABSTRACT

The phoD-harboring bacterial community is responsible for organic phosphorus (P) mineralization in soil and is important for understanding the interactions between arbuscular mycorrhizal (AM) fungi and phosphate-solubilizing bacteria (PSB) at the community level for organic P turnover. However, current understanding of the phoD-harboring bacterial community associated with AM fungal hyphae responses to organic P levels remains incomplete. Here, two-compartment microcosms were used to explore the response of the phoD-harboring bacterial community in the hyphosphere to organic P levels by high-throughput sequencing. Extraradical hyphae of Funneliformis mosseae enriched the phoD-harboring bacterial community and organic P levels significantly altered the composition of the phoD-harboring bacterial community in the Funneliformis mosseae hyphosphere. The relative abundance of dominant families Pseudomonadaceae and Burkholderiaceae was significantly different among organic P treatments and were positively correlated with alkaline phosphatase activity and available P concentration in the hyphosphere. Furthermore, phytin addition significantly decreased the abundance of the phoD gene, and the latter was significantly and negatively correlated with available P concentration. These findings not only improve the understanding of how organic P influences the phoD-harboring bacterial community but also provide a new insight into AM fungus-PSB interactions at the community level to drive organic P turnover in soil.


Subject(s)
Fungi , Mycorrhizae , Phosphorus , Humans , Soil Microbiology , Bacteria/genetics , Phosphates , Soil
10.
Bioresour Bioprocess ; 10(1): 28, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-38647882

ABSTRACT

Extractive adsorption is an integrated separation method employing a novel resin with both particle and liquid characteristics in terms of adsorption and extraction. In this study, the novel extractive adsorption polystyrene-divinylbenzene (PS-DVB) macroporous resin was synthesized by suspension polymerization, in which n-octanol (OL-PS-DVB) or mixed alcohols of n-octanol, undecyl alcohol, and tetradecyl alcohol (MA-PS-DVB) were added as porogen and enclosed in the resin skeleton after the reaction. The characterization of the two novel resins of OL-PS-DVB and MA-PS-DVB showed that they have large specific surface areas of 48.7 and 17.4 m2/g, respectively. Additionally, the two synthesized resins have much higher static adsorption capacities of 1,3-propanediol (511 and 473 mg/g) and dynamic adsorption capacities (312 and 267 mg/g) than traditional resins, because extractants enclosed in the resin can increase the adsorption capacity. Through Langmuir equation, the theoretical static maximum adsorption capacity of the mixed alcohols resin is 515 mg/g at 298 K and Gibbs free energy change of adsorption was -3781 J/mol, indicating that the adsorption process was spontaneous. In addition, the sorbent concentration effect in the resin was generated at high 1,3-propanediol (1,3-PDO) concentrations. The fitting of the Flocculation model can reveal that there is a possible relation between adsorption and flocculation. Compared to OL-PS-DVB, MA-PS-DVB showed better performance in the recovery yield of 1,3-PDO and other byproducts, the removal rates of the inorganic salt and protein, and the efficiency of recycled resin. For MA-PS-DVB, the recovery of 1,3-PDO, butyrate acid, acetic acid, and residual glycerol was 97.1%, 94.7%, 93.3%, and 90.3%, respectively. Simultaneously, the resin of MA-PS-DVB could remove 93.8% of inorganic salts and 90.9% of proteins in the concentrated fermentation broth. The two synthesized resins of OL-PS-DVB and MA-PS-DVB still had 90% or 92% of capacity for extractive adsorption of 1,3-propanediol after 10 times of recycling, which exhibited potential application in the separation of 1,3-propanediol from fermentation broth.

11.
Bioresour Bioprocess ; 8(1): 123, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-38650301

ABSTRACT

In this study, ionic liquid-based sugaring-out extraction was developed to separate lactic acid from the synthetic solution and actual lignocellulosic fermentation broth. Except for [EOHmim]BF4, the ILs with BF4- and OTF- anion can form aqueous two-phase system (ATPS) with the aid of saccharides. With the same kind of saccharides, the ATPS formation ability of ILs could be promoted by increasing the side-chain length of ILs in the order of [Hmim]BF4 ≈ [Bmim]BF4 ˃ [Emim]BF4 due to the decrease in ILs' kosmotropicity. On the other hand, for the same type of ILs, an ATPS was formed more easily with glucose than with xylose. When IL concentration varied from 35% (w/w) to 40% (w/w) at a low glucose concentration of 15% (w/w), an interesting phase reversal was observed. When lactic acid was undissociated at pH 2.0, 51.8% LA and 92.3% [Bmim]BF4 were partitioned to the top phase, and 97.0% glucose to the bottom phase using an ATPS consisting of 25% (w/w) glucose and 45% (w/w) IL. The total recovery of LA would increase to 89.0% in three-stage sugaring-out extraction from synthetic solution. In three-stage sugaring-out extraction from the filtered and unfiltered fermentation broth obtained via simultaneous saccharification and co-fermentation (SSCF) of acid-pretreated corn stover by the microbial consortium, the total recovery of LA was 89.5% and 89.8%, respectively. Furthermore, the total removal ratio of cells and pigments from the unfiltered broth was 68.4% and 65.4%, respectively. The results support IL-based sugaring-out extraction as a potential method for the recovery of lactic acid from actual fermentation broth.

SELECTION OF CITATIONS
SEARCH DETAIL