Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Sci Rep ; 14(1): 12904, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839810

ABSTRACT

Air pollution is a serious environmental health concern for humans and other living organisms. This study analyzes the spatial and temporal characteristics of air pollutant concentrations, changes in the degree of pollution, and the wavelet coherence of the air quality index (AQI) with pollutants in various monitoring stations. The analysis is based on long-term time series data (January 2016 to December 2023) of air pollutants (PM2.5, PM10, and O3) from Korla, an oasis city in the northeastern part of the Tarim Basin, China. The concentrations of PM2.5, PM10, and O3 in Korla showed a cyclical trend from 2016 to 2023; PM10 concentrations exhibited all-season exceedance and PM2.5 exhibited exceedance only in spring. PM2.5 and PM10 showed a seasonal distribution of spring > winter > fall > summer; O3 concentrations showed a seasonal distribution of summer > spring > fall > winter. Strong positive wavelet coherence between PM and Air Quality Index (AQI) data series suggests that the AQI data series can effectively characterize fluctuating trends in PM concentrations. Moreover, PM10 levels IV and VI were maintained at approximately 10%, indicating that sand and dust have a substantial influence on air quality and pose potential threats to the health of urban inhabitants. Based on the results of this study, future efforts must strengthen relative countermeasures for sand prevention and control, select urban greening species with anti-pollution capabilities, rationally expand urban green spaces, and restrict regulations for reducing particulate matter emissions within city areas.

2.
Chem Commun (Camb) ; 60(46): 5932-5935, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38757567

ABSTRACT

A novel NIR fluorescent probe based on quinoline-conjugated benzo[cd]indol dual-salt for NADH was developed. This probe swiftly detects and responds sensitively to both endogenous and exogenous NADH alterations, enabling imaging of NADH fluctuations in type II diabetic and AD model cells.


Subject(s)
Fluorescent Dyes , Mitochondria , NAD , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , NAD/analysis , NAD/chemistry , Mitochondria/metabolism , Mitochondria/chemistry , Humans , Quinolines/chemistry , Infrared Rays , Optical Imaging , Animals , Diabetes Mellitus, Type 2
3.
Sci Total Environ ; 927: 172314, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593876

ABSTRACT

Solar-driven steam evaporation technology, known for its low energy consumption and environmental friendliness, has emerged as a promising approach for seawater desalination, wastewater purification, etc. However, creating a low-cost solar evaporation system that simultaneously achieves rapid water transport, efficient light absorption, and salt tolerance remains challenging. Here, a dual-layer evaporator based on reed roots has been developed after a simple H2O2 delignification treatment and flame treatment, which exhibited enhanced water transport performance and photothermal properties. As excepted, delignification treatment enhanced the capillary water transport ability of reed roots, which is conducive to promoting the dilution of salt in the evaporator and preventing salt deposition. The evaporator demonstrates an impressive steam generation efficiency of 83.5 % and a remarkable water evaporation rate of 1.407 kg m-2 h-1 under 1 sun, thanks to its well-designed structure and optimized performance. Moreover, the evaporator exhibited excellent practical performance for outdoor applications and demonstrates a remarkable capacity for sewage purification, effectively treating heavy metal ion wastewater as well as dye wastewater. As a result, the objective of our research is to explore opportunities for the implementation of deployable, cost-effective, low-carbon-footprint solar water purification systems, particularly for some impoverished regions, to ensure the provision of high-quality water.

4.
Article in English | MEDLINE | ID: mdl-38504012

ABSTRACT

Witnessing violent or traumatic events is common during childhood and adolescence and could cause detrimental effects such as increased risks of psychiatric disorders. This stressor could be modeled in adolescent laboratory animals using the chronic witnessing social defeat (CWSD) paradigm, but the behavioral consequences of CWSD in adolescent animals remain to be validated for cognitive, anxiety-like, and depression-like behaviors and, more importantly, the underlying neural mechanisms remain to be uncovered. In this study, we first established the CWSD model in adolescent male mice and found that CWSD impaired cognitive function and increased anxiety levels and that these behavioral deficits persisted into adulthood. Based on the dorsal-ventral functional division in hippocampus, we employed immediate early gene c-fos immunostaining after behavioral tasks and found that CWSD-induced cognition deficits were associated with dorsal CA3 overactivation and anxiety-like behaviors were associated with ventral CA3 activity reduction. Indeed, chemogenetic activation and inhibition of dorsal CA3 neurons mimicked and reversed CWSD-induced recognition memory deficits (not anxiety-like behaviors), respectively, whereas both inhibition and activation of ventral CA3 neurons increased anxiety-like behaviors in adolescent mice. Finally, chronic administration of vortioxetine (a novel multimodal antidepressant) successfully restored the overactivation of dorsal CA3 neurons and the cognitive deficits in CWSD mice. Together, our findings suggest that dorsal CA3 overactivation mediates CWSD-induced recognition memory deficits in adolescent male mice, shedding light on the pathophysiology of adolescent CWSD-induced adverse effects and providing preclinical evidence for early treatment of stress-induced cognitive deficits.

5.
Pharmacol Biochem Behav ; 237: 173722, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336220

ABSTRACT

The sex difference that females are more vulnerable to depression than males has been recently replicated in an animal model of early-life stress (ES) called the limited bedding and nesting material (LBN) paradigm. Adopting this animal model, we have previously examined the effects of ES on monoamine transporter (MATs) expression in stress-related regions in adult female mice, and the reversal effects of a novel multimodal antidepressant, vortioxetine. In this study, replacing vortioxetine with a classical antidepressant, fluoxetine, we aimed to replicate the ES effects in adult female mice and to elucidate the commonality and differences between fluoxetine and vortioxetine. We found that systemic 30-day treatment with fluoxetine successfully reversed ES-induced depression-like behaviors (especially sucrose preference) in adult female mice. At the molecular level, we largely replicated the ES effects, such as reduced serotonin transporter (SERT) expression in the amygdala and increased norepinephrine transporter (NET) expression in the medial prefrontal cortex (mPFC) and hippocampus. Similar reversal effects of fluoxetine and vortioxetine were observed, including SERT in the amygdala and NET in the mPFC, whereas different reversal effects were observed for NET in the hippocampus and vesicular monoamine transporters expression in the nucleus accumbens. Overall, these results demonstrate the validity of the LBN paradigm to induce depression-like behaviors in female mice, highlight the involvement of region-specific MATs in ES-induced depression-like behaviors, and provide insights for further investigation of neurobiological mechanisms, treatment, and prevention associated with depression in women.


Subject(s)
Adverse Childhood Experiences , Fluoxetine , Humans , Female , Mice , Male , Animals , Fluoxetine/pharmacology , Vortioxetine , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy
6.
FEMS Microbiol Lett ; 3712024 01 09.
Article in English | MEDLINE | ID: mdl-38258560

ABSTRACT

Autophagy is pivotal in maintaining intracellular homeostasis, which involves various biological processes, including cellular senescence and lifespan modulation. Being an important member of the protein O-mannosyltransferase (PMT) family of enzymes, Pmt1p deficiency can significantly extend the replicative lifespan (RLS) of yeast cells through an endoplasmic reticulum (ER) unfolded protein response (UPR) pathway, which is participated in protein homeostasis. Nevertheless, the mechanisms that Pmt1p regulates the lifespan of yeast cells still need to be explored. In this study, we found that the long-lived PMT1 deficiency strain (pmt1Δ) elevated the expression levels of most autophagy-related genes, the expression levels of total GFP-Atg8 fusion protein and free GFP protein compared with wild-type yeast strain (BY4742). Moreover, the long-lived pmt1Δ strain showed the greater dot-signal accumulation from GFP-Atg8 fusion protein in the vacuole lumen through a confocal microscope. However, deficiency of SAC1 or ATG8, two essential components of the autophagy process, decreased the cell proliferation ability of the long-lived pmt1Δ yeast cells, and prevented the lifespan extension. In addition, our findings demonstrated that overexpression of ATG8 had no potential effect on the RLS of the pmt1Δ yeast cells, and the maintained incubation of minimal synthetic medium lacking nitrogen (SD-N medium as starvation-induced autophagy) inhibited the cell proliferation ability of the pmt1Δ yeast cells with the culture time, and blocked the lifespan extension, especially in the SD-N medium cultured for 15 days. Our results suggest that the long-lived pmt1Δ strain enhances the basal autophagy activity, while deficiency of SAC1 or ATG8 decreases the cell proliferation ability and shortens the RLS of the long-lived pmt1Δ yeast cells. Moreover, the maintained starvation-induced autophagy impairs extension of the long-lived pmt1Δ yeast cells, and even leads to the cell death.


Subject(s)
Autophagy-Related Protein 8 Family , Phosphoric Monoester Hydrolases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Autophagy/genetics , Autophagy-Related Protein 8 Family/genetics , Cell Death , Cell Proliferation/genetics , Phosphoric Monoester Hydrolases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
7.
Chem Soc Rev ; 52(16): 5706-5743, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37525607

ABSTRACT

Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.

8.
Foods ; 12(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628046

ABSTRACT

With the prohibition of antibiotics in feed, certain phytocompounds have been widely studied as feed additives. Chlorogenic acid (CGA), a natural polyphenol found in plants, possesses anti-inflammatory, antioxidant, and metabolic regulatory features. The objective of this study was to investigate the effects of dietary chlorogenic acid supplementation on growth performance and carcass traits, as well as meat quality, nutrient value and flavor substances of Duroc × Landrace × Yorkshire (DLY) pigs. Forty healthy DLY pigs (initial body weight (BW): 26.69 ± 0.37) were allotted to four treatment groups and were fed with the control diet, which was supplemented with 25 mg kg-1, 50 mg kg-1, and 100 mg kg-1 CGA, respectively. The trial lasted 100 days. The results suggested that dietary CGA supplementation had no effect (p < 0.05) on the average daily gain (ADG) and feed conversion ratio (FC). Herein, it was found that 50 mg kg-1 CGA-containing diet not only increased the dressing percentage and perirenal fat, but also reduced the rate of muscular pH decline (p < 0.05). In the longissimus thoracis (LT) muscle, the myofiber-type-related genes such as the MyHC IIa and MyHC IIX mRNA levels were increased by 100 mg kg-1 CGA. The results also indicated that the 100 mg kg-1 CGA-containing diet increased the content of crude fat, glycogen, total amino acids, and flavor amino acids, but decreased the inosine and hypoxanthine concentration in LT (p < 0.05). Meanwhile, the lipogenic gene ACC1 mRNA level was elevated by 50 mg kg-1 CGA. Instead, 100 mg kg-1 CGA downregulated the expression level of NT5C2, an enzyme responsible for inosine-5'-monophosphate (IMP) degradation. Additionally, 100 mg kg-1 CGA decreased the malondialdehyde (MDA) content, but increased the glutathione peroxidase (GSH-Px) content as well as antioxidant gene (HO-1, NQO-1, NRF2) mRNA levels in LT muscle. These findings showed that dietary CGA could partly improve carcass traits and muscle flavor without negatively affecting growth performance, and the underlying mechanism may be due to the antioxidant properties induced by CGA.

9.
J Colloid Interface Sci ; 648: 654-663, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37321084

ABSTRACT

Microbial fuel cells (MFCs) have great potential as a new energy technology that utilizes microorganisms to produce electrical energy by decomposing organic matter. A cathode catalyst is key to achieving an accelerated cathodic oxygen reduction reaction (ORR) in MFCs. We prepared a Zr-based metal organic-framework-derived silver-iron co-doped bimetallic material based on electrospun nanofibers by promoting the in situ growth of UiO-66-NH2 on polyacrylonitrile (PAN) nanofibers and named it as CNFs-Ag/Fe-m:n doped catalyst (m:n were 0, 1:1, 1:2, 1:3, and 2:1, respectively). Experimental results combined with density functional theory (DFT) calculations reveal that a moderate amount of Fe doped in CNFs-Ag-1:1 reduces the Gibbs free energy in the last step of the ORR. This indicates that Fe doping improves the performance of the catalytic ORR, and MFCs equipped with CNFs-Ag/Fe-1:1 exhibit a maximum power density of 737. 45 mW m-2, significantly higher than that obtained for MFCs using commercial Pt/C (457.99 mW m-2).

10.
Transl Psychiatry ; 13(1): 173, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225683

ABSTRACT

Cognitive dysfunction is a significant, untreated clinical need in patients with psychiatric disorders, for which preclinical studies are needed to understand the underlying mechanisms and to identify potential therapeutic targets. Early-life stress (ELS) leads to long-lasting deficits of hippocampus-dependent learning and memory in adult mice, which may be associated with the hypofunction of the brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin receptor kinase B (TrkB). In this study, we carried out eight experiments using male mice to examine the causal involvement of the BDNF-TrkB pathway in dentate gyrus (DG) and the therapeutic effects of the TrkB agonist (7,8-DHF) in ELS-induced cognitive deficits. Adopting the limited nesting and bedding material paradigm, we first demonstrated that ELS impaired spatial memory, suppressed BDNF expression and neurogenesis in the DG in adult mice. Downregulating BDNF expression (conditional BDNF knockdown) or inhibition of the TrkB receptor (using its antagonist ANA-12) in the DG mimicked the cognitive deficits of ELS. Acute upregulation of BDNF (exogenous human recombinant BDNF microinjection) levels or activation of TrkB receptor (using its agonist, 7,8-DHF) in the DG restored ELS-induced spatial memory loss. Finally, acute and subchronic systemic administration of 7,8-DHF successfully restored spatial memory loss in stressed mice. Subchronic 7,8-DHF treatment also reversed ELS-induced neurogenesis reduction. Our findings highlight BDNF-TrkB system as the molecular target of ELS-induced spatial memory deficits and provide translational evidence for the intervention at this system in the treatment of cognitive deficits in stress-related psychiatric disorders, such as major depressive disorder.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Stress, Psychological , Animals , Humans , Male , Mice , Brain-Derived Neurotrophic Factor , Cognition , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Dentate Gyrus , Memory Disorders , Receptor, trkB , Tropomyosin
11.
Entropy (Basel) ; 25(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37190422

ABSTRACT

We performed a theoretical study of the dephasing dynamics of a quantum two-state system under the influences of a non-equilibrium fluctuating environment. The effect of the environmental non-equilibrium fluctuations on the quantum system is described by a generalized random telegraph noise (RTN) process, of which the statistical properties are both non-stationary and non-Markovian. Due to the time-homogeneous property in the master equations for the multi-time probability distribution, the decoherence factor induced by the generalized RTN with a modulatable-type memory kernel can be exactly derived by means of a closed fourth-order differential equation with respect to time. In some special limit cases, the decoherence factor recovers to the expression of the previous ones. We analyzed in detail the environmental effect of memory modulation in the dynamical dephasing in four types of dynamics regimes. The results showed that the dynamical dephasing of the quantum system and the conversion between the Markovian and non-Markovian characters in the dephasing dynamics under the influence of the generalized RTN can be effectively modulated via the environmental memory kernel.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122476, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36787678

ABSTRACT

The monitoring of polybrominated diphenyl ethers (PBDEs) is of great significance owing to their high persistence, bioaccumulation, and toxicity to humans and animals. In this study, a sensitive and reproducible probe that integrates solid-phase microextraction and surface-enhanced Raman spectroscopy (SPME-SERS) was developed for screening PBDEs in multiphase specimens, including live fish, water, and electrical products. A roughed Cu fiber with an Ag layer was fabricated with dual functions. BDE-15 was readily extracted and detected on the SPME-SERS probe consisting of propanethiol-modified Ag nanoplates on a Cu wire. A clear linear relationship (R2 = 0.988) was established between the SERS intensity at 782 cm-1 and the logarithmic concentrations (from 100 ppb to 100 ppm), with a detection limit of 15 ppb. This proposed method enables continuous in vivo monitoring in fish without complicated pretreatments. The results obtained by this SPME-SERS approach were validated by high-performance liquid chromatography and showed good agreement. This "extracting and detecting" SPME-SERS method provides a potential tool to monitor the occurrence, formation, and migration of PBDEs.


Subject(s)
Halogenated Diphenyl Ethers , Solid Phase Microextraction , Animals , Humans , Halogenated Diphenyl Ethers/analysis , Solid Phase Microextraction/methods , Spectrum Analysis, Raman/methods , Water
13.
J Colloid Interface Sci ; 636: 305-316, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36638570

ABSTRACT

High-efficiency oxygen reduction reaction (ORR) electrocatalyst in microbial fuel cells (MFCs) is important to boost the power production efficiency and reduce overall cost. Herein, we demonstrate a novel nitrogen (N)-doped carbon nanofiber (N-CNF) supported metal and metal compound heterostructure derived from metal-organic frameworks (MOFs), which endows superior electrocatalytic activity by optimizing the coupling modulation effect. The resulting cobalt/cobalt phosphide and cobalt/cobalt sulfide nanoparticles embedded in N-doped carbon nanofiber (Co/CoP/Co2P@N-CNF, Co/CoS2@N-CNF) present superior ORR activity and methanol tolerance. Moreover, the assembled MFCs modified with Co/CoP/Co2P@N-CNF and Co/CoS2@N-CNF composite also achieve higher power density (375.16 and 400.06 mW m-2) as well as coulombic efficiency (11.2 %, 12.4 %), superior than that of Pt/C electrode (333.70 mW m-2, 10.4 %). Impressively, the Co/CoS2@N-CNF electrode exhibits long-term stability and durability in dual-chamber MFCs. A high-performance heterostructure cathode with an effective strategy for bridging nanocatalysis and practical MFCs is reported and presented.

14.
Cell Biol Toxicol ; 39(5): 2011-2032, 2023 10.
Article in English | MEDLINE | ID: mdl-35022897

ABSTRACT

Increasing evidence suggests that targeting ubiquitin-specific peptidase 8 (USP8) serves as an attractive anti-cancer strategy. However, the role of USP8 inhibitor, DUB-IN-1, in esophageal squamous cell carcinoma (ESCC) cells still needs to be explored. Here, immunohistochemistry was employed to examine the expression of USP8 in ESCC tissues. Cell Counting Kit-8 (CCK-8) was used to evaluate cell proliferation ability, and propidium iodide (PI) was selected to test the effect of DUB-IN-1 on cell cycle. AnnexinV-FITC/PI staining and the activity of caspase 3 were detedcted to evaluate apoptosis. Transmission electron microscope, microtubule-associated protein 1 light-chain 3 (LC3) expression, and acridine orange (AO) staining were selected to check if there was autophagy. Comet assay and γ-H2AX immunofluorescence was used to monitor DNA damage. Rescue experiment was used to determine the key role of of p53 in cell cycle, apoptosis, and autophagy. Results revealed that the leve of USP8 was higher in ESCC tissues than that in tissues adjacent to carcinoma. DUB-IN-1, an USP8 inhibitor, caused DNA damage, led to G2/M phase block by p53-p21 axis, and triggered apoptosis by regulating the p53 target proteins including Bax, Noxa, and Puma. Besides, DUB-IN-1 could stimulate autophagy through p53-dependent adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activation. Taken together, this study revealed the cytotoxic effects and the mechanism of DUB-IN-1, which indicated that DUB-IN-1 may be a novel inhibitor targeting USP8 that can kill ESCC cells. USP8 inhibitor, DUB-IN-1, treatment could inhibit esophageal squamous cell carcinoma cell growth and induce G2/M cell cycle arrest, apoptosis, and autophagy by DNA damage-induced p53 activation. DUB-IN-1 treatment led to G2/M cell cycle arrest by upregulating the protein level of p21 and triggered apoptosis by modulating the p53 target proteins including Bax, Noxa, and Puma. Meanwhile, DUB-IN-1 treatment stimulated protective autophagy through p53-dependent AMPK activation. Collectively, these findings suggested that DNA damage-triggered p53 activation, p53-Puma/Noxa/Bax, p53-p21, and p53-AMPK pathways were all involved in the effect of DUB-IN-1.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Tumor Suppressor Protein p53/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/pharmacology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , bcl-2-Associated X Protein/metabolism , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Cell Cycle Checkpoints , Apoptosis , DNA Damage , Cell Proliferation , G2 Phase Cell Cycle Checkpoints , Autophagy , Endopeptidases/genetics , Endopeptidases/metabolism , Endopeptidases/pharmacology
15.
Neurosci Bull ; 39(1): 41-56, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35750984

ABSTRACT

Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.


Subject(s)
Sleep Wake Disorders , Stress, Psychological , Animals , Mice , Corticotropin-Releasing Hormone/metabolism , Nucleus Accumbens/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Sleep , Stress, Psychological/complications
16.
Stoch Environ Res Risk Assess ; 37(4): 1265-1279, 2023.
Article in English | MEDLINE | ID: mdl-36438164

ABSTRACT

As a key node city of the "Silk Road Economic Belt" Urumqi has been listed as one of the ten most polluted cities in the world, posing a serious threat to the urban environment and residents' health. This study analyzed the air quality before and during the COVID-19 (Coronavirus disease 2019) pandemic and its potential health effects based on the data of PM2.5, PM10, SO2, NO2, CO, and O3_8h levels from 10 air quality monitoring stations in Urumqi from January 1, 2017, to December 31, 2021. As per the results, the concentrations of the air pollutants PM2.5, PM10, SO2, NO2, CO, and O3_8h in Urumqi from 2017 to 2021 showed a cyclical trend, and the implementation of COVID-19 prevention and control measures could effectively reduce the concentration(ρ) of air pollutants. The mean value of ρ(PM2.5) decreased from 2017 to 2021, whereas ρ(O3_8h) showed a waveform change trend (increased in 2017-2018, decreased in 2018-2020, and increased after 2020). Meanwhile, the maximum annual average values of ρ(PM2.5) and ρ(O3_8h) for the six monitoring stations during 2017-2021 occurred at sites S2 (74.37 µg m-3) and S6 (91.80 µg m-3), respectively; rapid industrialization had a greater impact on PM2.5 and O3_8h concentrations compared to commercial and residential areas. In addition, the air quality index data series can characterize the fluctuation trend of PM2.5. The high pollution levels (Class IV and V) of the air pollutants PM2.5 and O3_8h in Urumqi have been decreasing annually, and good days can account for 80-95% of the total number of days in the year, indicating that the number of days with a potential threat to residents' health is gradually decreasing. Therefore, more attention should be paid in controlling and managing air pollution in Urumqi.

17.
J Colloid Interface Sci ; 629(Pt B): 970-979, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36208609

ABSTRACT

The low power density originating from poor electroactive bacteria (EAB) adhesion and sluggish extracellular electron transfer (EET) at the anode interface, is a major impediment preventing the practical implementation of microbial fuel cells (MFCs). Tailoring the surface properties of anodes is an effective and powerful strategy for addressing this issue. In this study, we successfully fabricated an efficient anode electrocatalyst, consisting of carbon nanotubes encapsulating iron disulfide (FeS2@CNT) micropolyhedrons, using simple hydrothermal and freeze-drying methods, which not only strengthened the anode interaction with EAB but also promoted the EET process at the anode interface. As expected, the MFCs with a FeS2@CNT anode yielded an outstanding power density of 1914 mWm-2 at a current density of 4350 mA m-2, which significantly exceeded those of pure CNT (1096.2mW m-2, 2703.3 mA m-2) and carbon cloth (426.8mWm-2, 965.6 mA m-2) anodes. The high-power output can be attributed to the synergistic effect between FeS2 and CNTs, endowing the anode with biocompatibility for biofilm adhesion and colonization, nutrient diffusion, and the presence of abundant Fe and S active sites for EET mediation. Owing to the low cost, facile fabrication process, and excellent electrocatalytic performance toward the redox reactions in biofilms, the synthesized FeS2@CNT electrocatalyst is a promising material for high-performance and cost-effective MFCs with commercial applications.

18.
Cell Death Dis ; 13(11): 951, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357365

ABSTRACT

The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1) plays a role in the progression of various tumors, emerging as a potential therapeutic target. This study aimed to determine the role of USP1 as a therapeutic target in hepatocellular carcinoma (HCC). We detected USP1 expression in the tumor and adjacent tissues of patients with HCC using immunohistochemical staining. We evaluated the effect of the USP1 inhibitor ML-323 on HCC cell proliferation and cell cycle using a CCK-8 cell-counting kit and plate cloning assays, and propidium iodide, respectively. Apoptosis was detected by annexin V-FITC/Propidium Iodide (PI) staining and caspase 3 (casp3) activity. Transmission electron microscopy and LC3B immunofluorescence were used to detect autophagy. Western blotting was used to detect the accumulation of ubiquitinated proteins, the expression of endoplasmic reticulum (ER) stress-related proteins, and the AMPK-ULK1/ATG13 signaling pathway. We demonstrated that ML-323 inhibits the growth of HCC cells and induces G1 phase cell cycle arrest by regulating cyclin expression. ML-323 treatment resulted in the accumulation of ubiquitinated proteins, induced ER stress, and triggered Noxa-dependent apoptosis, which was regulated by the Activating Transcription Factor 4(ATF4). Moreover, active ER stress induces protective autophagy by increasing AMPK phosphorylation; therefore, we inhibited ER stress using 4-Phenylbutyric acid (4-PBA), which resulted in ER stress reduction, apoptosis, and autophagy in ML-323-treated HCC cells. In addition, blocking autophagy using the AMPK inhibitor compound C (CC), chloroquine (CQ), or bafilomycin A1 (BafA1) enhanced the cytotoxic effect of ML-323. Our findings revealed that targeting USP1 may be a potential strategy for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Protein Aggregates , AMP-Activated Protein Kinases/metabolism , Ubiquitinated Proteins , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Propidium/pharmacology , Endoplasmic Reticulum Stress , Autophagy , Apoptosis , Cell Line, Tumor , Ubiquitin-Specific Proteases
19.
Apoptosis ; 27(7-8): 545-560, 2022 08.
Article in English | MEDLINE | ID: mdl-35654870

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a common digestive cancer with high mortality rate due to late diagnosis and drug resistance. It is important to identify new molecular target and develop new anticancer strategy. ML323 is a novel USP1 inhibitor and exhibits anticancer activity against several cancers. Herein, we investigated whether ML323 has some cytotoxity effect on ESCC cells and explored the underlying mechanisms. Results revealed that ML323 impeded esophageal cancer cell viability and colony formation. Meanwhile, ML323 blocked cells at G0/G1 phase concomitant with the reduced protein level of c-Myc, cyclin D1, CDK4 and CDK6. ML323 treatment also triggered DNA damage and active p53. Then, ML323 induced apoptosis by p53-Noxa. Additionally, it stimulated protective autophagy. Co-treatment with CQ or BafA1, two classical autophagy inhibitors, enhanced the cytotoxity of ML323. These findings suggested that USP1 inhibitor (ML323) could be used as a viable anti-ESCC approach.


Subject(s)
Antineoplastic Agents , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Autophagy , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Humans , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology
20.
Eur J Med Chem ; 229: 114069, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34971875

ABSTRACT

As the continuation of our work on the development of tubulin inhibitors with potential anticancer activities, novel bis-substituted aromatic amide dithiocarbamate derivatives were designed by contacting bis-substituted aryl scaffolds (potential anti-tubulin fragments) with N-containing heterocycles (potential anti-tubulin fragments) in one hybrid using the anticancer dithioformate unit as the linker. The antiproliferative activity against three digestive tract tumor cells was evaluated and preliminary structure activity relationships were summarized. Among these compounds, compound 20q exhibited most potent antiproliferative activity against MGC-803, HCT-116, Kyse30 and Kyse450 cells with IC50 values of 0.084, 0.227, 0.069 and 0.078 µM, respectively. In further studies, compound 20q was identified as a novel tubulin inhibitor targeting the colchicine binding site. Compound 20q could inhibit the microtubule assembly and disrupt cytoskeleton in Kyse30 and Kyse450 cells. The results of molecular docking suggested that compound 20q could tightly bind into the colchicine binding site of tubulin by hydrogen bonds and hydrophobic interactions. Compound 20q dose-dependently inhibited the cell growth and colony formation, effectively arrested cells at the G2/M phase and induce mitochondrial apoptosis in Kyse30 and Kyse450 cells. In addition, Compound 20q could regulate the expression of G2/M phase and mitochondrial apoptosis related proteins. Collectively, compound 20q was here reported as a novel tubulin inhibitor with potential anticancer activities.


Subject(s)
Amides/chemistry , Antineoplastic Agents/chemical synthesis , Colchicine/chemistry , Thiocarbamates/chemical synthesis , Tubulin Modulators/chemical synthesis , Tubulin/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Polymerization , Protein Binding , Signal Transduction , Structure-Activity Relationship , Thiocarbamates/pharmacology , Tubulin Modulators/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...