Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 269
Filter
1.
Talanta ; 276: 126253, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38759359

ABSTRACT

A novel zeolitic imidazolate framework-encapsulated zinc porphyrin (ZnTCPP@ZIF-90) photoresponsive nanozyme is proposed for the colorimetric/fluorescent dual-mode visual sensing of glyphosate (Gly). ZnTCPP@ZIF-90 exhibits photoresponsive oxidase-like activity and fluorescence quenching behavior. Meanwhile, the outer ZIF-90 layer can be selectively destroyed by Gly, causing the release of free ZnTCPP, resulting in the enhanced enzyme-like activity as well as fluorescence emission. The constructed ZnTCPP@ZIF-90 was successfully used for the colorimetric/fluorescent dual-mode detection of Gly. Additionally, the colorimetric and fluorescent images information captured by the smartphone were converted to color intensity (HSV/RGB values), with limits of detection of 0.27 µg/mL and 0.19 µg/mL, respectively. The proposed dual-mode sensor exhibits excellent selectivity and reliability for detecting Gly, and can be successfully applied to the analysis of real samples such as tap water, lake water, and fruit washing water. The current research efforts are expected to provide new perspectives for designing highly active photoresponsive nanozymes and their stimuli-responsive sensing systems, paving the way for their applications in portable dual-mode chemical sensing and environmental monitoring.

2.
J Virol ; 98(5): e0001624, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563732

ABSTRACT

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Subject(s)
Calcineurin , Calcium , Immunity, Innate , Interferon Type I , Newcastle disease virus , Protein Serine-Threonine Kinases , Virus Replication , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Newcastle disease virus/immunology , Animals , Calcineurin/metabolism , Humans , Calcium/metabolism , Interferon Type I/metabolism , Interferon Type I/immunology , Phosphorylation , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle Disease/metabolism , Calcium Signaling , Cell Line , HEK293 Cells
3.
Stem Cells Int ; 2024: 5579228, 2024.
Article in English | MEDLINE | ID: mdl-38550755

ABSTRACT

The immunoregulatory role of mesenchymal stem cells (MSCs) in inflammation is heterogeneous and can exhibit anti-inflammatory or proinflammatory properties depending on the microenvironment. We herein observed that the activation of Toll-like receptor 3 (TLR3) by polyinosinic : polycytidylic acid (poly(I : C)) stimulation facilitated the transformation of adipose-derived stem cells (ADSCs) into an anti-inflammatory phenotype. The enhanced anti-inflammatory properties were assessed in a taurocholate-induced pancreatitis model. The results demonstrated that poly(I : C) pretreated ADSCs exhibited enhanced anti-inflammatory properties than untreated ADSCs in taurocholate-induced pancreatitis. Mechanistically, poly(I : C)-treated ADSCs showed increased production and secretion of interleukin-10 (IL-10), which demonstrates a potent ability to alleviate inflammatory signaling cascades in acinar cells. Simultaneously, the heightened anti-inflammatory effects of poly(I : C)-treated ADSCs in pancreatitis were associated with the regulation of macrophage classical/alternative transformation, thereby mitigating inflammatory factor-mediated damage to the pancreatic acinar cell. We propose that TLR3 activation by poly(I : C) is an effective strategy to enhance the anti-inflammatory properties of MSCs, which offers a valuable consideration for improving the therapeutic efficacy of MSCs in inflammatory diseases.

4.
J Anesth ; 38(3): 377-385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441686

ABSTRACT

PURPOSE: More literature studies have reported that alfentanil is safe and effective for labor analgesia. However, there is no unified consensus on the optimal dosage of alfentanil used for epidural analgesia. This study explored the concentration at 90% of minimum effective concentration (EC90) of alfentanil combined with 0.075% ropivacaine in patients undergoing epidural labor analgesia to infer reasonable drug compatibility and provide guidance for clinical practice. METHODS: In this prospective, single-center, double-blind study, a total of 45 singleton term primiparas with vaginal delivery who volunteered for epidural labor analgesia were recruited. The first maternal was administered with 3 µg/mL alfentanil combined with 0.075% ropivacaine with the infusion of 10 mL of the mixture every 50 min at a background dose of 3 mL/h. In the absence of PCEA, a total of 15 mL of the mixture is injected per hour. The subsequent alfentanil concentration was determined on the block efficacy of the previous case, using an up-down sequential allocation with a bias-coin design. 30 min after epidural labor analgesia, the block of patient failed with visual analog score (VAS) > 3, the alfentanil concentration was increased in a 0.5 µg/mL gradient for the next patient, while the block was successful with VAS ≤ 3, the alfentanil concentration was remained or decreased in a gradient according to a randomized response list for the next patient. EC90 and 95% confidence interval were calculated by linear interpolation and prediction model with R statistical software. RESULTS: In this study, the estimated EC90 of alfentanil was 3.85 µg/mL (95% confidence interval, 3.64-4.28 µg/mL). CONCLUSION: When combined with ropivacaine 0.075%, the EC90 of alfentanil for epidural labor analgesia is 3.85 µg/mL in patients undergoing labor analgesia.


Subject(s)
Alfentanil , Analgesia, Epidural , Analgesia, Obstetrical , Analgesics, Opioid , Anesthetics, Local , Ropivacaine , Humans , Ropivacaine/administration & dosage , Female , Double-Blind Method , Alfentanil/administration & dosage , Pregnancy , Analgesia, Epidural/methods , Prospective Studies , Adult , Anesthetics, Local/administration & dosage , Analgesia, Obstetrical/methods , Analgesics, Opioid/administration & dosage , Dose-Response Relationship, Drug , Pain Measurement/methods , Pain Measurement/drug effects
5.
Appl Environ Microbiol ; 90(4): e0186323, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38446072

ABSTRACT

The incorporation of noncanonical amino acids (ncAAs) into proteins can enhance their function beyond the abilities of canonical amino acids and even generate new functions. However, the ncAAs used for such research are usually chemically synthesized, which is expensive and hinders their application on large industrial scales. We believe that the biosynthesis of ncAAs using metabolic engineering and their employment in situ in target protein engineering with genetic code expansion could overcome these limitations. As a proof of principle, we biosynthesized four ncAAs, O-L-methyltyrosine, 3,4-dihydroxy-L-phenylalanine, 5-hydroxytryptophan, and 5-chloro-L-tryptophan using metabolic engineering and directly evolved the fluorescent consensus green protein (CGP) by combination with nine other exogenous ncAAs in Escherichia coli. After screening a TAG scanning library expressing 13 ncAAs, several variants with enhanced fluorescence and stability were identified. The variants CGPV3pMeoF/K190pMeoF and CGPG20pMeoF/K190pMeoF expressed with biosynthetic O-L-methyltyrosine showed an approximately 1.4-fold improvement in fluorescence compared to the original level, and a 2.5-fold improvement in residual fluorescence after heat treatment. Our results demonstrated the feasibility of integrating metabolic engineering, genetic code expansion, and directed evolution in engineered cells to employ biosynthetic ncAAs in protein engineering. These results could further promote the application of ncAAs in protein engineering and enzyme evolution. IMPORTANCE: Noncanonical amino acids (ncAAs) have shown great potential in protein engineering and enzyme evolution through genetic code expansion. However, in most cases, ncAAs must be provided exogenously during protein expression, which hinders their application, especially when they are expensive or have poor cell membrane penetration. Engineering cells with artificial metabolic pathways to biosynthesize ncAAs and employing them in situ for protein engineering and enzyme evolution could facilitate their application and reduce costs. Here, we attempted to evolve the fluorescent consensus green protein (CGP) with biosynthesized ncAAs. Our results demonstrated the feasibility of using biosynthesized ncAAs in protein engineering, which could further stimulate the application of ncAAs in bioengineering and biomedicine.


Subject(s)
Amino Acids , Proteins , Consensus , Proteins/metabolism , Amino Acids/metabolism , Protein Engineering/methods , Methyltyrosines/genetics
6.
Inorg Chem ; 63(11): 4797-4801, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38427578

ABSTRACT

Two peripheral functionalized clamp-shaped cobalt porphyrin(2.1.2.1) complexes were synthesized, and their electrocatalytic ORR abilities were investigated. The crystal data and optical and redox properties of them were revised by peripheral modification. The ORR capacities and DFT calculations of F5PhCo and F5NCo suggest superior selectivity for the 4e- ORR pathway. This work further confirms the clamp-shaped cobalt porphyrin complexes are ideal Co-N4 ORR catalysts.

7.
Chem Commun (Camb) ; 60(27): 3673-3676, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38456471

ABSTRACT

The solution processed FAPbI3 perovskite usually suffers from chaotic orientations. Herein, a template structure of oriented 2D perovskite is used to obtain a high-quality FAPbI3 film with (001) preferred orientation by cation exchange. The highly oriented BA2PbI4 serves as a growth template and promotes the (001) orientation of the 3D perovskite. The dominantly (001) orientated FAPbI3 perovskite exhibits uniform surface morphology and suppressed film defects.

8.
J Virol ; 98(3): e0189723, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38411946

ABSTRACT

Ferroptosis, a form of programmed cell death characterized by iron-dependent lipid peroxidation, has recently gained considerable attention in the field of cancer therapy. There is significant crosstalk between ferroptosis and several classical signaling pathways, such as the Hippo pathway, which suppresses abnormal growth and is frequently aberrant in tumor tissues. Yes-associated protein 1 (YAP), the core effector molecule of the Hippo pathway, is abnormally expressed and activated in a variety of malignant tumor tissues. We previously proved that the oncolytic Newcastle disease virus (NDV) activated ferroptosis to kill tumor cells. NDV has been used in tumor therapy; however, its oncolytic mechanism is not completely understood. In this study, we demonstrated that NDV exacerbated ferroptosis in tumor cells by inducing ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Blocking YAP degradation suppressed NDV-induced ferroptosis by suppressing the expression of Zrt/Irt-like protein 14 (ZIP14), a metal ion transporter that regulates iron uptake. These findings demonstrate that NDV exacerbated ferroptosis in tumor cells by inducing YAP degradation. Our study provides new insights into the mechanism of NDV-induced ferroptosis and highlights the critical role that oncolytic viruses play in the treatment of drug-resistant cancers.IMPORTANCEThe oncolytic Newcastle disease virus (NDV) is being developed for use in cancer treatment; however, its oncolytic mechanism is still not completely understood. The Hippo pathway, which is a tumor suppressor pathway, is frequently dysregulated in tumor tissues due to aberrant yes-associated protein 1 (YAP) activation. In this study, we have demonstrated that NDV degrades YAP to induce ferroptosis and promote virus replication in tumor cells. Notably, NDV was found to induce ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Our study reveals a new mechanism by which NDV induces ferroptosis and provides new insights into NDV as an oncolytic agent for cancer treatment.


Subject(s)
Ferroptosis , Neoplasms , Newcastle disease virus , Oncolytic Virotherapy , YAP-Signaling Proteins , Animals , Humans , Adaptor Proteins, Signal Transducing , Cell Line, Tumor , Iron , Neoplasms/therapy , Oncolytic Viruses/physiology , Transcription Factors/genetics , Ubiquitin-Protein Ligases , Ubiquitins
9.
iScience ; 27(2): 108962, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38322989

ABSTRACT

Newcastle disease is a global problem that causes huge economic losses and threatens the health and welfare of poultry. Despite the knowledge gained on the metabolic impact of NDV on cells, the extent to which infection modifies the plasma metabolic network in chickens remains unknown. Herein, we performed targeted metabolomic and lipidomic to create a plasma metabolic network map during NDV infection. Meanwhile, we used single-cell RNA sequencing to explore the heterogeneity of lung tissue cells in response to NDV infection in vivo. The results showed that NDV remodeled the plasma phospholipid metabolism network. NDV preferentially targets infected blood endothelial cells, antigen-presenting cells, fibroblasts, and neutrophils in lung tissue. Importantly, NDV may directly regulate ribosome protein transcription to facilitate efficient viral protein translation. In conclusion, NDV infection remodels the plasma phospholipid metabolism network in chickens. This work provides valuable insights to further understand the pathogenesis of NDV.

10.
Environ Pollut ; 346: 123623, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387545

ABSTRACT

Microplastics (MPs), pollutants detected at high frequency in the environment, can be served as carriers of many kinds of pollutants and have typical characteristics of environmental persistence and bioaccumulation. The potential risks of MPs ecological environment and health have been widely concerned by scholars and engineering practitioners. Previous reviews mostly focused on the pollution characteristics and ecological toxicity of MPs, but there were few reviews on MPs analysis methods, aging mechanisms and removal strategies. To address this issue, this review first summarizes the contamination characteristics of MPs in different environmental media, and then focuses on analyzing the detection methods and analyzing the aging mechanisms of MPs, which include physical aging and chemical aging. Further, the ecotoxicity of MPs to different organisms and the associated enhanced removal strategies are outlined. Finally, some unresolved research questions related to MPs are prospected. This review focuses on the ageing and ecotoxic behaviour of MPs and provides some theoretical references for the potential environmental risks of MPs and their deep control.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Microplastics/toxicity , Microplastics/analysis , Plastics/toxicity , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis
11.
J Microbiol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421547

ABSTRACT

Due to the ever-increasing demand for meat, it has become necessary to identify cheap and sustainable sources of protein for animal feed. Feathers are the major byproduct of poultry industry, which are rich in hard-to-degrade keratin protein. Previously we found that intact feathers can be digested into free amino acids, short peptides, and nano-/micro-keratin particles by the strain Bacillus licheniformis WHU in water, and the resulting feather hydrolysates exhibit prebiotic effects on mice. To explore the potential utilization of feather hydrolysate in the feed industry, we investigated its effects on the gut microbiota of broilers and fish. Our results suggest that feather hydrolysates significantly decrease and increase the diversity of gut microbial communities in broilers and fish, respectively. The composition of the gut microbiota was markedly altered in both of the animals. The abundance of bacteria with potentially pathogenic phenotypes in the gut microbial community of the fish significantly decreased. Staphylococcus spp., Pseudomonas spp., Neisseria spp., Achromobacter spp. were significantly inhibited by the feather hydrolysates. In addition, feather hydrolysates significantly improved proteolytic activity in the guts of broilers and fish. In fish, the expression levels of ZO-1 and TGF-α significantly improved after administration of feather hydrolysates. The results presented here suggest that feather hydrolysates generated by B. licheniformis WHU could be an alternative protein source in aquaculture and could exert beneficial effects on fish.

12.
J Colloid Interface Sci ; 659: 594-602, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38198936

ABSTRACT

The development of a full-spectrum responsive photocatalytic germicide with excellent charge separation efficiency to harvest high antimicrobial efficacy is a key goal yet a challenging conundrum. Herein, graphitic carbon nitride nanosheet (PCNS)/Ti3C2Tx MXene/TiO2 (PMT) Z-scheme heterojunctions with robust interface contact were crafted by in situ interfacial engineering. The strong internal electrical field (IEF) from PCNS to TiO2, evinced by the Kelvin Probe Force Microscopy (KPFM) characterization, can obtain high charge separation efficiency with 73.99%, compared to Schottky junction PCNS/Ti3C2Tx (PM, 32.88%) and PCNS (17.70%). The Ti3C2Tx component can not only serve as a transfer pathway to accelerate the recombination of photoexcited electrons of TiO2 and holes of PCNS under the Ultraviolet-visible (UV-vis) light irradiation, but also replenish the photogenic electron concentrations to semiconductors in the near-infrared (NIR) light illumination. Meanwhile, the increased temperature due to the localized surface plasmon resonance (LSPR) can further boost the electronic activity to the generation of reactive oxygen species (ROS). Taken together, the PMT performs a high disinfection efficiency up to 99.40% under full solar spectrum illumination, 3.88 and 9.75 times higher than PCNS and TiO2, respectively, surpassing many reported Z-scheme heterojunctions. This work offers guidance for the design of Z-scheme heterojunction with the implanting of plasmons to secure excellent full-spectrum responsive photocatalytic sterilization performance.

13.
Antiviral Res ; 221: 105780, 2024 01.
Article in English | MEDLINE | ID: mdl-38092324

ABSTRACT

Peroxisomes are ubiquitous organelles found in eukaryotic cells that play a critical role in the oxidative metabolism of lipids and detoxification of reactive oxygen species (ROS). Recently, the role of peroxisomes in viral infections has been extensively studied. Although several studies have reported that peroxisomes exert antiviral activity, evidence indicates that viruses have also evolved diverse strategies to evade peroxisomal antiviral signals. In this review, we summarize the multiple roles of peroxisomes in the interplay between viruses and mammalian cells. Focus is given on the peroxisomal regulation of innate immune response, lipid metabolism, ROS production, and viral regulation of peroxisomal biosynthesis and degradation. Understanding the interactions between peroxisomes and viruses provides novel insights for the development of new antiviral strategies.


Subject(s)
Signal Transduction , Viruses , Animals , Reactive Oxygen Species/metabolism , Peroxisomes/metabolism , Viruses/metabolism , Antiviral Agents/metabolism , Mammals/metabolism
14.
Small ; 20(11): e2308209, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880867

ABSTRACT

Orientation guidance has shown its cutting edges in electrodeposition modulation to promote Zn anode stability toward commercialized standards. Nevertheless, large-scale orientational deposition is handicapped by the competition between Zn-ion reduction and mass transfer. Herein, a holistic electrolyte additive protocol is put forward via incorporating bio-derived dextrin molecules into a zinc sulfate electrolyte bath. Electrochemical tests in combination with molecular dynamics simulations demonstrate the alleviation of concentration polarization throughout accelerating Zn2+ diffusion and retarding their reduction. The predominant (101) texture on inert current collectors (i.e., Cu, Ti, and stainless steel) and (101)/(002) textures on Zn foils afford homogeneous electrical field distribution, which is contributed by the work difference to form the 2D nucleus and the adsorption of dextrin molecules, respectively. Consequently, the symmetric cell harvests a longevous cycling lifespan of over 4000 h at 0.5 mA cm-2 /0.5 mAh cm-2 while the Zn@Cu electrode sustains for 240 h at a high depth of discharge of 40%.

15.
Sci Total Environ ; 912: 168822, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38043821

ABSTRACT

The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.


Subject(s)
Charcoal , Environmental Restoration and Remediation , Environment , Environmental Pollution , Anaerobiosis
16.
Antiviral Res ; 221: 105786, 2024 01.
Article in English | MEDLINE | ID: mdl-38147902

ABSTRACT

The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Virus Diseases , Humans , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Protein Transport , Viral Proteins/metabolism , Interferons/metabolism , Ubiquitin-Protein Ligases , Virus Replication , Virus Release
17.
World J Microbiol Biotechnol ; 40(1): 30, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057391

ABSTRACT

Keratinases have drawn increasing attention in recent decades owing to their catalytic versatility and broad applications from agriculture to medicine. In the present study, we isolated a highly keratinolytic and fibrinolytic bacterium from the campus soil and named it Stenotrophomonas sp. LMY based on genetic information. To identify the potential keratinase genes, the genome sequence of the strain was obtained and analyzed. Sequence alignment and comparison revealed that the protein 1_737 (KerZJ) had the highest sequence homology to a reported keratinase KerBL. We recombinantly expressed KerZJ in Escherichia coli Origami™ (DE) pLysS and purified it to homogeneity. KerZJ showed the highest activity at 40 °C and pH 9.0, and metal ions exhibited no significant effects on its activity. Although reducing agents would break the disulfide bonds in KerZJ and reduce its activity, KerZJ still exhibited the ability to hydrolyze feather keratin in the presence of ß-ME. KerZJ could efficiently digest human prion proteins. In addition, KerZJ showed fibrinolytic activity on fibrin plates and effectively eliminated blood clots in a thrombosis mouse model without side effects. Our results suggest that KerZJ is a versatile keratinase with significant potential for keratin treatment, decontamination of prions, and fibrinolytic therapy.


Subject(s)
Peptide Hydrolases , Stenotrophomonas , Animals , Humans , Mice , Feathers/chemistry , Hydrogen-Ion Concentration , Keratins , Metals/metabolism , Peptide Hydrolases/metabolism , Stenotrophomonas/genetics , Stenotrophomonas/metabolism
18.
Inorg Chem ; 62(51): 21461-21469, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38041798

ABSTRACT

The development of high-efficiency oxygen evolution reaction (OER) electrocatalysts for the production and conversion of clean energy is paramount yet also full of challenges. Herein, we proposed a simple and universal method to precisely fabricate the hierarchically structured CuO/TMOs loaded on Cu foil (CuO/TMOs/CF) (TMO represents Mn3O4, NiO, CoO, and CuO) nanorod-array electrodes as a highly active and stable OER electrocatalyst, employing Cu(OH)2/CF as a self-sacrificing template by the subsequent H2O2-induced chemical deposition (HiCD) and pyrolysis process. Taking CuO/Mn3O4/CF as an example, we systematically investigated its structure-performance relationship via experimental and theoretical explorations. The enhanced OER activity can be ascribed to the rational design of the nanoarray with multiple synergistic effects of abundant active sites, excellent electronic conductivity of the metallic Cu foil substrate, strong interface charge transfer, and quasi-superhydrophilic/superaerophobic property. Consequently, the optimal CuO/Mn3O4/CF presents an overpotential of 293 mV to achieve a current density of 20 mA cm-2 in 1.0 M KOH media, comparable to that of commercial RuO2 (282 mV), delivering excellent durability by the electrolysis of water at a potential of around 1.60 V [vs reversible hydrogen electrode (RHE)] without evident degeneration. This work might offer a feasible scheme for developing a hybrid nanoarray OER electrocatalyst via regulating electron transportation and mass transfer.

19.
Huan Jing Ke Xue ; 44(12): 6992-7003, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098422

ABSTRACT

To explore the influences of chemical oxidation on the physiological and ecological functions of indigenous microorganisms during contaminated soil remediation, three oxidants, including KMnO4, Na2S2O8, and O3, were selected to investigate their remediation effects on PAHs and the responses to indigenous microorganisms under different liquid-solid ratios, in this study. The results showed that:when the ΣPAHs concentration was 679.1 mg·kg-1 and the dosage of KMnO4 and Na2S2O8 was 1%, the removal efficiency of ΣPAHs reached up to 96.9% and 95.7% under the liquid-solid ratio of 6:1; for the O3 treatment, the removal efficiency of ΣPAHs was the highest(82.3%) at the O3 dosage and the liquid-solid ratio of 72 mg·min-1 and 8:1, respectively. The removal efficiency of low ring(3-4 rings) PAHs was higher than that of high ring(5-6 rings) PAHs under different liquid-solid ratios. The highest removal efficiencies were observed for phenanthrene and acenaphthene, whereas for benzo[a]pyrene, only the KMnO4treatment provided an effective performance, showing the highest removal efficiency of 97.4%. The microbial quantity analysis indicated that the quantity of soil microorganisms in the soil dropped sharply after being treated with KMnO4, decreasing from 108 copies·g-1 to 105 copies·g-1, whereas it changed only slightly after being treated with Na2S2O8 and O3. The community structure analysis showed that Proteobacteria were predominant in the contaminated soil, with the relative abundance of 99.5%. The addition of KMnO4 and Na2S2O8 significantly increased the microbial diversity; in particular, the relative abundance of a variety of microorganisms(such as Ralstonia and Acinetobacter) that can degrade PAHs was remarkably increased. The analysis of microbial metabolic function pathways revealed that chemical oxidation could simultaneously increase the relative abundance of PAHs-degrading bacteria and improve the ability of organic metabolism. Overall, the KMnO4 treatment greatly altered the quantity of microorganisms and the structure of the microbial community and the relative abundance of PAHs-degrading microorganisms at the liquid-solid ratio of 6:1.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Oxidants/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Coke/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Soil/chemistry , Soil Microbiology
20.
Article in English | MEDLINE | ID: mdl-38158486

ABSTRACT

The issue of environmental pollution caused by the widespread presence of microplastics (MPs) in environmental media has garnered significant attention. However, research on MPs pollution has mainly focused on aquatic ecosystems in recent years. The sources and pollution characteristics of MPs in the environment, especially in solid waste, have not been well-described. Additionally, there are few reports on the ecotoxicity of MPs, which highlights the need to fill this gap. This review first summarizes the occurrence characteristics of MPs in water, soil, and marine environments, and then provides an overview of their toxic effects on organisms and the relevant mechanisms. This paper also provides an outlook on the hotspots of research on pollution characterization and ecotoxicity of MPs. Finally, this review aims to provide insights for future ecotoxicity control of MPs. Overall, this paper expands our understanding of the pollution characteristics and ecological toxicity of MPs in current environmental media, providing forward-looking guidance for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...