Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Angew Chem Int Ed Engl ; : e202410441, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949087

ABSTRACT

Two-dimensional (2D) nanosheets-based membranes, which have controlled 2D nano-confined channels, are highly desirable for molecular/ionic sieving and confined reactions. However, it is still difficult to develop an efficient method to prepare large-area membranes with high stability, high orientation, and accurately adjustable interlayer spacing. Here, we present a strategy to produce metal ion cross-linked membranes with precisely controlled 2D nano-confined channels and high stability in different solutions using superspreading shear-flow-induced assembly strategy. For example, membranes based on graphene oxide (GO) exhibit interlayer spacing ranging from 8.0 ± 0.1 Å to 10.3 ± 0.2 Å, with a precision of down to 1 Å. At the same time, the value of the orientation order parameter (f) of GO membranes is up to 0.95 and GO membranes exhibit superb stability in different solutions. The strategy we present, which can be generalized to the preparation of 2D nano-confined channels based on a variety of 2D materials, will expand the application scope and provide better performances of membranes.

2.
Sci Adv ; 10(27): eadp3309, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959320

ABSTRACT

The success of solid-state synthesis often hinges on the first intermediate phase that forms, which determines the remaining driving force to produce the desired target material. Recent work suggests that when reaction energies are large, thermodynamics primarily dictates the initial product formed, regardless of reactant stoichiometry. Here, we validate this principle and quantify its constraints by performing in situ characterization on 37 pairs of reactants. These experiments reveal a threshold for thermodynamic control in solid-state reactions, whereby initial product formation can be predicted when its driving force exceeds that of all other competing phases by ≥60 milli-electron volt per atom. In contrast, when multiple phases have a comparable driving force to form, the initial product is more often determined by kinetic factors. Analysis of the Materials Project data shows that 15% of possible reactions fall within the regime of thermodynamic control, highlighting the opportunity to predict synthesis pathways from first principles.

4.
Nat Mater ; 23(4): 535-542, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308087

ABSTRACT

Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction. The over-stoichiometric Li-In-Sn-O compound exhibits a total Li superionic conductivity of 3.38 × 10-4 S cm-1 at room temperature with a low migration barrier of 255 meV. Our work unlocks the potential of designing Li superionic conductors in a prototypical structural framework with vast chemical flexibility, providing fertile ground for discovering new solid-state electrolytes.

5.
Sleep ; 47(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38173348

ABSTRACT

STUDY OBJECTIVES: Growing evidences have documented various abnormalities of the white matter bundles in people with narcolepsy. We sought to evaluate topological properties of brain structural networks, and their association with symptoms and neuropathophysiological features in people with narcolepsy. METHODS: Diffusion tensor imaging was conducted for people with narcolepsy (n = 30) and matched healthy controls as well as symptoms assessment. Structural connectivity for each participant was generated to analyze global and regional topological properties and their correlations with narcoleptic features. Further human brain transcriptome was extracted and spatially registered for connectivity vulnerability. Genetic functional enrichment analysis was performed and further clarified using in vivo emission computed tomography data. RESULTS: A wide and dramatic decrease in structural connectivities was observed in people with narcolepsy, with descending network degree and global efficiency. These metrics were not only correlated with sleep latency and awakening features, but also reflected alterations of sleep macrostructure in people with narcolepsy. Network-based statistics identified a small hyperenhanced subnetwork of cingulate gyrus that was closely related to rapid eye movement sleep behavior disorder (RBD) in narcolepsy. Further imaging genetics analysis suggested glutamatergic signatures were responsible for the preferential vulnerability of connectivity alterations in people with narcolepsy, while additional PET/SPECT data verified that structural alteration was significantly correlated with metabotropic glutamate receptor 5 (mGlutR5) and N-methyl-D-aspartate receptor (NMDA). CONCLUSIONS: People with narcolepsy endured a remarkable decrease in the structural architecture, which was not only closely related to narcolepsy symptoms but also glutamatergic signatures.


Subject(s)
Brain , Diffusion Tensor Imaging , Narcolepsy , Humans , Narcolepsy/physiopathology , Narcolepsy/genetics , Narcolepsy/diagnostic imaging , Male , Adult , Female , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , White Matter/diagnostic imaging , White Matter/physiopathology , White Matter/pathology , REM Sleep Behavior Disorder/physiopathology , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/genetics , Case-Control Studies , Middle Aged
6.
Nanoscale ; 15(45): 18473-18480, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37941430

ABSTRACT

Indium antimonide nanowires (InSb NWs) are attractive building-block candidates for bottom-up construction of high-efficiency electronics and optoelectronics due to their narrow direct band gap, fast room temperature carrier mobilities and small exciton binding energy. However, InSb NWs synthesized by the vapor-liquid-solution (VLS) mechanism generally suffer from an increased carrier and phonon scattering rate, which is thought to be caused by randomly distributed crystal defects along the NW growth direction. In this study, by utilizing the recently developed low-temperature, solution-processed technique, these crystal defects were successfully suppressed by periodically distributed twin planes to form twinned InSb nanowires. Importantly, measurements of the electrical transport properties of field effect transistors (FETs) reveal that the InSb NWs exhibit a hole-dominated conductivity with room temperature mobilities of up to 50.71 cm2 V-1 s-1, which is distinctly contrary to the intrinsic n-type InSb NWs. This observation of n-p switching behavior is probably attributed to the surface band bending effect with regard to the Fermi energy level, which is caused by surface oxide trap states arising from the native-oxide layer at the surface of the InSb NWs. All these results illustrate that the as-prepared colloidal InSb NWs can potentially be used as p-type materials for integration with next-generation nanoscale electronics and optoelectronics via surface engineering.

8.
Sci Adv ; 9(17): eabq3285, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37126560

ABSTRACT

Revealing the local structure of solid electrolytes (SEs) with electron microscopy is critical for the fundamental understanding of the performance of solid-state batteries (SSBs). However, the intrinsic structural information in the SSB can be misleading if the sample's interactions with the electron beams are not fully understood. In this work, we systematically investigate the effect of electron beams on Al-doped lithium lanthanum zirconium oxide (LLZO) under different imaging conditions. Li metal is observed to grow directly on the clean surface of LLZO. The Li metal growth kinetics and the morphology obtained are found to be heavily influenced by the temperature, accelerating voltage, and electron beam intensity. We prove that the lithium growth is due to the LLZO delithiation activated by a positive charging effect under electron beam emission. Our results deepen the understanding of the electron beam impact on SEs and provide guidance for battery material characterization using electron microscopy.

9.
Front Physiol ; 14: 1144980, 2023.
Article in English | MEDLINE | ID: mdl-37051017

ABSTRACT

Inflammatory bowel disease (IBD) is caused by a variety of pathogenic factors, including chronic recurrent inflammation of the ileum, rectum, and colon. Immune cells and adhesion molecules play an important role in the course of the disease, which is actually an autoimmune disease. During IBD, CD34 is involved in mediating the migration of a variety of immune cells (neutrophils, eosinophils, and mast cells) to the inflammatory site, and its interaction with various adhesion molecules is involved in the occurrence and development of IBD. Although the function of CD34 as a partial cell marker is well known, little is known on its role in IBD. Therefore, this article describes the structure and biological function of CD34, as well as on its potential mechanism in the development of IBD.

10.
Sci Data ; 9(1): 231, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614129

ABSTRACT

The development of a materials synthesis route is usually based on heuristics and experience. A possible new approach would be to apply data-driven approaches to learn the patterns of synthesis from past experience and use them to predict the syntheses of novel materials. However, this route is impeded by the lack of a large-scale database of synthesis formulations. In this work, we applied advanced machine learning and natural language processing techniques to construct a dataset of 35,675 solution-based synthesis procedures extracted from the scientific literature. Each procedure contains essential synthesis information including the precursors and target materials, their quantities, and the synthesis actions and corresponding attributes. Every procedure is also augmented with the reaction formula. Through this work, we are making freely available the first large dataset of solution-based inorganic materials synthesis procedures.

11.
Nat Mater ; 21(8): 924-931, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35361915

ABSTRACT

Superionic lithium conductivity has only been discovered in a few classes of materials, mostly found in thiophosphates and rarely in oxides. Herein, we reveal that corner-sharing connectivity of the oxide crystal structure framework promotes superionic conductivity, which we rationalize from the distorted lithium environment and reduced interaction between lithium and non-lithium cations. By performing a high-throughput search for materials with this feature, we discover ten new oxide frameworks predicted to exhibit superionic conductivity-from which we experimentally demonstrate LiGa(SeO3)2 with a bulk ionic conductivity of 0.11 mS cm-1 and an activation energy of 0.17 eV. Our findings provide insight into the factors that govern fast lithium mobility in oxide materials and will accelerate the development of new oxide electrolytes for all-solid-state batteries.

12.
Langmuir ; 37(14): 4276-4283, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33793243

ABSTRACT

Macroscopic supramolecular assembly (MSA) is a new concept of supramolecular science with an emphasis on noncovalent interactions between macroscopic building blocks with sizes exceeding 10 µm. Owing to a similar noncovalently interactive nature with the phenomena of bioadhesion, self-healing, etc. and flexible features in tailoring and designing modular building blocks, MSA has been developed as a simplified model to interpret interfacial phenomena and a facile method to fabricate supramolecular materials. However, at this early stage, MSA has always been limited to hydrogel materials, which provide flowability for high molecular mobility to the interfacial binding. The extension to a wide range of materials for MSA is desired. Herein, we have developed a strategy of adjusting intrinsic properties (e.g., elastic modulus) of nonhydrogel materials to realize MSA, which could broaden the material choices of MSA. Using the widely used elastomer of poly(dimethylsiloxane) (PDMS) as building blocks, we have demonstrated the elastic-modulus-dependent MSA of PDMS based on the host/guest molecular recognition between supramolecular groups of ß-cyclodextrin and adamantane. In the varied elastic modulus range of 0.38 to 3.84 MPa, we obtained the trend of the MSA probability decreasing from 100% at 0.38 MPa to 0% at 3.84 MPa. Meanwhile, in situ measurements of interactive forces between PDMS building blocks have supported the observed assembly phenomena. The underlying reasons are interpreted with the low-modulus flexible surfaces favoring for high molecular mobility to achieve interactions between multiple sites at the interface based on the theory of multivalency. Taken together, we have demonstrated the feasibility of directly adjusting the modulus of bulk materials to realize MSA of nonhydrogel materials, which may provide clues to the fast wet adhesion and new solutions to the additive manufacture of elastomer materials.

13.
Cureus ; 13(3): e14108, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33927922

ABSTRACT

Purpose The diagnosis of prostate transition zone cancer (PTZC) remains a clinical challenge due to their similarity to benign prostatic hyperplasia (BPH) on MRI. The Deep Convolutional Neural Networks (DCNNs) showed high efficacy in diagnosing PTZC on medical imaging but was limited by the small data size. A transfer learning (TL) method was combined with deep learning to overcome this challenge. Materials and methods A retrospective investigation was conducted on 217 patients enrolled from our hospital database (208 patients) and The Cancer Imaging Archive (nine patients). Using T2-weighted images (T2WIs) and apparent diffusion coefficient (ADC) maps, DCNN models were trained and compared between different TL databases (ImageNet vs. disease-related images) and protocols (from scratch, fine-tuning, or transductive transferring). Results PTZC and BPH can be classified through traditional DCNN. The efficacy of TL from natural images was limited but improved by transferring knowledge from the disease-related images. Furthermore, transductive TL from disease-related images had comparable efficacy to the fine-tuning method. Limitations include retrospective design and a relatively small sample size. Conclusion Deep TL from disease-related images is a powerful tool for an automated PTZC diagnostic system. In developing regions where only conventional MR scans are available, the accurate diagnosis of PTZC can be achieved via transductive deep TL from disease-related images.

14.
BMC Med Imaging ; 21(1): 17, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33535988

ABSTRACT

BACKGROUND: Based on conventional MRI images, it is difficult to differentiatepseudoprogression from true progressionin GBM patients after standard treatment, which isa critical issue associated with survival. The aim of this study was to evaluate the diagnostic performance of machine learning using radiomics modelfrom T1-weighted contrast enhanced imaging(T1CE) in differentiating pseudoprogression from true progression after standard treatment for GBM. METHODS: Seventy-sevenGBM patients, including 51 with true progression and 26 with pseudoprogression,who underwent standard treatment and T1CE, were retrospectively enrolled.Clinical information, including sex, age, KPS score, resection extent, neurological deficit and mean radiation dose, were also recorded collected for each patient. The whole tumor enhancementwas manually drawn on the T1CE image, and a total of texture 9675 features were extracted and fed to a two-step feature selection scheme. A random forest (RF) classifier was trained to separate the patients by their outcomes.The diagnostic efficacies of the radiomics modeland radiologist assessment were further compared by using theaccuracy (ACC), sensitivity and specificity. RESULTS: No clinical features showed statistically significant differences between true progression and pseudoprogression.The radiomic classifier demonstrated ACC, sensitivity, and specificity of 72.78%(95% confidence interval [CI]: 0.45,0.91), 78.36%(95%CI: 0.56,1.00) and 61.33%(95%CI: 0.20,0.82).The accuracy, sensitivity and specificity of three radiologists' assessment were66.23%(95% CI: 0.55,0.76), 61.50%(95% CI: 0.43,0.78) and 68.62%(95% CI: 0.55,0.80); 55.84%(95% CI: 0.45,0.66),69.25%(95% CI: 0.50,0.84) and 49.13%(95% CI: 0.36,0.62); 55.84%(95% CI: 0.45,0.66), 69.23%(95% CI: 0.50,0.84) and 47.06%(95% CI: 0.34,0.61), respectively. CONCLUSION: T1CE-based radiomics showed better classification performance compared with radiologists' assessment.The radiomics modelwas promising in differentiating pseudoprogression from true progression.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Machine Learning , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aged , Brain Neoplasms/therapy , Contrast Media , Disease Progression , Female , Glioblastoma/therapy , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Neoadjuvant Therapy , Radiation Dosage , Retrospective Studies , Sensitivity and Specificity , Young Adult
15.
Chem Rev ; 121(3): 1623-1669, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33356176

ABSTRACT

The tremendous improvement in performance and cost of lithium-ion batteries (LIBs) have made them the technology of choice for electrical energy storage. While established battery chemistries and cell architectures for Li-ion batteries achieve good power and energy density, LIBs are unlikely to meet all the performance, cost, and scaling targets required for energy storage, in particular, in large-scale applications such as electrified transportation and grids. The demand to further reduce cost and/or increase energy density, as well as the growing concern related to natural resource needs for Li-ion have accelerated the investigation of so-called "beyond Li-ion" technologies. In this review, we will discuss the recent achievements, challenges, and opportunities of four important "beyond Li-ion" technologies: Na-ion batteries, K-ion batteries, all-solid-state batteries, and multivalent batteries. The fundamental science behind the challenges, and potential solutions toward the goals of a low-cost and/or high-energy-density future, are discussed in detail for each technology. While it is unlikely that any given new technology will fully replace Li-ion in the near future, "beyond Li-ion" technologies should be thought of as opportunities for energy storage to grow into mid/large-scale applications.

16.
Nat Mater ; 20(2): 214-221, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33046857

ABSTRACT

High-entropy (HE) ceramics, by analogy with HE metallic alloys, are an emerging class of solid solutions composed of a large number of species. These materials offer the benefit of large compositional flexibility and can be used in a wide variety of applications, including thermoelectrics, catalysts, superionic conductors and battery electrodes. We show here that the HE concept can lead to very substantial improvements in performance in battery cathodes. Among lithium-ion cathodes, cation-disordered rocksalt (DRX)-type materials are an ideal platform within which to design HE materials because of their demonstrated chemical flexibility. By comparing a group of DRX cathodes containing two, four or six transition metal (TM) species, we show that short-range order systematically decreases, whereas energy density and rate capability systematically increase, as more TM cation species are mixed together, despite the total metal content remaining fixed. A DRX cathode with six TM species achieves 307 mAh g-1 (955 Wh kg-1) at a low rate (20 mA g-1), and retains more than 170 mAh g-1 when cycling at a high rate of 2,000 mA g-1. To facilitate further design in this HE DRX space, we also present a compatibility analysis of 23 different TM ions, and successfully synthesize a phase-pure HE DRX compound containing 12 TM species as a proof of concept.

17.
Adv Sci (Weinh) ; 7(23): 2002025, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304756

ABSTRACT

Integration of diverse materials into 3D ordered structures is urgently required for advanced manufacture owing to increase in demand for high-performance products. Most additive manufacturing techniques mainly focus on simply combining different equipment, while interfacial binding of distinctive materials remains a fundamental problem. Increasing studies on macroscopic supramolecular assembly (MSA) have revealed efficient interfacial interactions based on multivalency of supramolecular interactions facilitated by a "flexible spacing coating." To demonstrate facile fabrication of 3D heterogeneous ordered structures, the combination of MSA and magnetic field-assisted alignment has been developed as a new methodology for in situ integration of a wide range of materials, including elastomer, resin, plastics, metal, and quartz glass, with modulus ranging from tens of MPa to over 70 GPa. Assembly of single material, coassembly of two to four distinctive materials, and 3D alignment of "bridge-like" and "cross-stacked" heterogeneous structures are demonstrated. This methodology has provided a new solution to mild and efficient assembly of multiple materials at the macroscopic scale, which holds promise for advanced fabrication in fields of tissue engineering, electronic devices, and actuators.

18.
Front Neurosci ; 14: 144, 2020.
Article in English | MEDLINE | ID: mdl-32153362

ABSTRACT

BACKGROUND: To compare the efficacies of univariate and radiomics analyses of amide proton transfer weighted (APTW) imaging in predicting isocitrate dehydrogenase 1 (IDH1) mutation of grade II/III gliomas. METHODS: Fifty-nine grade II/III glioma patients with known IDH1 mutation status were prospectively included (IDH1 wild type, 16; IDH1 mutation, 43). A total of 1044 quantitative radiomics features were extracted from APTW images. The efficacies of univariate and radiomics analyses in predicting IDH1 mutation were compared. Feature values were compared between two groups with independent t-test and receiver operating characteristic (ROC) analysis was applied to evaluate the predicting efficacy of each feature. Cases were randomly assigned to either the training (n = 49) or test cohort (n = 10) for the radiomics analysis. Support vector machine with recursive feature elimination (SVM-RFE) was adopted to select the optimal feature subset. The adverse impact of the imbalance dataset in the training cohort was solved by synthetic minority oversampling technique (SMOTE). Subsequently, the performance of SVM model was assessed on both training and test cohort. RESULTS: As for univariate analysis, 18 features were significantly different between IDH1 wild-type and mutant groups (P < 0.05). Among these parameters, High Gray Level Run Emphasis All Direction offset 8 SD achieved the biggest area under the curve (AUC) (0.769) with the accuracy of 0.799. As for radiomics analysis, SVM model was established using 19 features selected with SVM-RFE. The AUC and accuracy for IDH1 mutation on training set were 0.892 and 0.952, while on the testing set were 0.7 and 0.84, respectively. CONCLUSION: Radiomics strategy based on APT image features is potentially useful for preoperative estimating IDH1 mutation status.

19.
BMC Neurol ; 20(1): 48, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32033580

ABSTRACT

BACKGROUND: The medical imaging to differentiate World Health Organization (WHO) grade II (ODG2) from III (ODG3) oligodendrogliomas still remains a challenge. We investigated whether combination of machine leaning with radiomics from conventional T1 contrast-enhanced (T1 CE) and fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) offered superior efficacy. METHODS: Thirty-six patients with histologically confirmed ODGs underwent T1 CE and 33 of them underwent FLAIR MR examination before any intervention from January 2015 to July 2017 were retrospectively recruited in the current study. The volume of interest (VOI) covering the whole tumor enhancement were manually drawn on the T1 CE and FLAIR slice by slice using ITK-SNAP and a total of 1072 features were extracted from the VOI using 3-D slicer software. Random forest (RF) algorithm was applied to differentiate ODG2 from ODG3 and the efficacy was tested with 5-fold cross validation. The diagnostic efficacy of radiomics-based machine learning and radiologist's assessment were also compared. RESULTS: Nineteen ODG2 and 17 ODG3 were included in this study and ODG3 tended to present with prominent necrosis and nodular/ring-like enhancement (P < 0.05). The AUC, ACC, sensitivity, and specificity of radiomics were 0.798, 0.735, 0.672, 0.789 for T1 CE, 0.774, 0.689, 0.700, 0.683 for FLAIR, as well as 0.861, 0.781, 0.778, 0.783 for the combination, respectively. The AUCs of radiologists 1, 2 and 3 were 0.700, 0.687, and 0.714, respectively. The efficacy of machine learning based on radiomics was superior to the radiologists' assessment. CONCLUSIONS: Machine-learning based on radiomics of T1 CE and FLAIR offered superior efficacy to that of radiologists in differentiating ODG2 from ODG3.


Subject(s)
Machine Learning , Magnetic Resonance Imaging/methods , Oligodendroglioma/pathology , Adolescent , Adult , Aged , Algorithms , Child , Female , Humans , Male , Middle Aged , Radiologists , Retrospective Studies , Sensitivity and Specificity , World Health Organization , Young Adult
20.
Cancer Manag Res ; 11: 9989-10000, 2019.
Article in English | MEDLINE | ID: mdl-31819632

ABSTRACT

PURPOSE: This study aims to incorporate informative histogram indicator analyses and advanced multimodal MRI parameters to differentiate low-grade gliomas (LGGs) from high-grade gliomas (HGGs) and to explore the features associated with patients' survival. PATIENTS AND METHODS: A total of 120 patients with pathologically confirmed LGGs or HGGs receiving conventional and advanced MRI such as three-dimensional arterial spin labeling (3D-ASL), intravoxel incoherent motion-diffusion weighted imaging (IVIM-DWI), and dynamic contrast-enhanced MRI (DCE-MRI) were included. The mean and histogram indicators from advanced MRI were calculated from the entire tumor. The efficacies of a single indicator or multiple parameters were tested in distinguishing HGGs from LGGs and predicting patients' survival. Receiver operating characteristic (ROC) curve and multivariable stepwise logistic regression were used to evaluate the diagnostic efficacies. Leave-one-out cross-validation was further used to validate the accuracy of the parameter sets in glioma grading. Log-rank test using the Kaplan-Meier curve was utilized to predict patients' survival. RESULTS: Overall, parameters from DCE-MRI performed better than those from 3D-ASL or IVIM-DWI in both glioma grading and survival prediction. The histogram metrics of Ve were demonstrated to have higher accuracies (the accuracies for Extended Tofts_Ve mean and Extended Tofts_Ve median were 68.33% and 71.67%, respectively, while those for the Incremental_Ve mean and Incremental_Ve 75th were 68.33% and 72.50%, respectively) in grading LGGs from HGGs. The combination of Tofts_Ve histogram metrics was the one with the highest accuracy (81.67%) and area under ROC curve (AUC = 0.840). On the other hand, Patlak_Ktrans 95th (AUC = 0.9265) and Extended Tofts_Ve 95th (AUC = 0.9154) performed better than their corresponding means (Patlak_Ktrans mean: AUC = 0.9118 and Extended Tofts_Ve mean: AUC = 0.9044) in predicting patients' overall survival (OS) at 18-month follow-up. CONCLUSION: DCE-MRI-derived histogram features from the entire tumor were promising metrics for glioma grading and OS prediction. Combining single modal histogram features improved glioma grading. TRIAL REGISTRATION: NCT02622620.

SELECTION OF CITATIONS
SEARCH DETAIL
...