Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Int J Surg ; 110(4): 2263-2274, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38348848

ABSTRACT

BACKGROUND: Highly active hepatitis B virus (HBV) is known to be associated with poor outcomes in patients with hepatocellular carcinoma (HCC). This study aims to investigate the relationship between HBV status and HCC recurrence after liver transplantation. METHODS: The study retrospectively analyzed HCC patients undergoing liver transplantation in two centres between January 2015 and December 2020. The authors reviewed post-transplant HBV status and its association with outcomes. RESULTS: The prognosis of recipients with hepatitis B surface antigen (HBsAg) reappearance ( n =58) was poorer than those with HBsAg persistent negative ( n =351) and positive ( n =53). In HBsAg persistent positive group, recipients with HBV DNA reappearance or greater than 10-fold increase above baseline had worse outcomes than those without ( P <0.01). HBV reactivation was defined as (a) HBsAg reappearance or (b) HBV DNA reappearance or greater than 10-fold increase above baseline. After propensity score matching, the 5-year overall survival rate and recurrence-free survival rate after liver transplantation in recipients with HBV reactivation were significantly lower than those without (32.0% vs. 62.3%; P <0.01, and 16.4% vs. 63.1%; P <0.01, respectively). Moreover, HBV reactivation was significantly related to post-transplant HCC recurrence, especially lung metastasis. Cox regression analysis revealed that beyond Milan criteria, microvascular invasion and HBsAg-positive graft were independent risk factors for post-transplant HBV reactivation, and a novel nomogram was established accordingly with a good predictive efficacy (area under the time-dependent receiver operating characteristic curve=0.78, C-index =0.73). CONCLUSIONS: Recipients with HBV reactivation had worse outcomes and higher tumour recurrence rates than those without. The nomogram could be used to evaluate the risk of post-transplant HBV reactivation effectively.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B virus , Liver Neoplasms , Liver Transplantation , Virus Activation , Humans , Retrospective Studies , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/surgery , Male , Female , Liver Neoplasms/virology , Liver Neoplasms/surgery , Liver Transplantation/adverse effects , Middle Aged , China/epidemiology , Prognosis , Neoplasm Recurrence, Local/virology , Hepatitis B/complications , Hepatitis B/virology , Hepatitis B Surface Antigens/blood , Adult
2.
Pharmaceutics ; 16(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399303

ABSTRACT

Ferroptosis has garnered attention as a potential approach to fight against cancer, which is characterized by the iron-driven buildup of lipid peroxidation. However, the robust defense mechanisms against intracellular ferroptosis pose significant challenges to its effective induction. In this paper, an effective gene delivery vehicle was developed to transport solute carrier family 7 member 11 (SLC7A11) shRNA (shSLC7A11), which downregulates the expression of the channel protein SLC7A11 and glutathione peroxidase 4 (GPX4), evoking a surge in reactive oxygen species production, iron accumulation, and lipid peroxidation in hepatocellular carcinoma (HCC) cells, and subsequently leading to ferroptosis. This delivery system is composed of an HCC-targeting lipid layer and esterase-responsive cationic polymer, a poly{N-[2-(acryloyloxy)ethyl]-N-[p-acetyloxyphenyl]-N} (PQDEA) condensed shSLC7A11 core (G-LPQDEA/shSLC7A11). After intravenous (i.v.) injection, G-LPQDEA/shSLC7A11 quickly accumulated in the tumor, retarding its growth by 77% and improving survival by two times. This study is the first to construct a gene delivery system, G-LPQDEA/shSLC7A11, that effectively inhibits HCC progression by downregulating SLC7A11 expression. This underscores its therapeutic potential as a safe and valuable candidate for clinical treatment.

3.
ACS Nano ; 18(8): 6243-6255, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38345597

ABSTRACT

Efficient catalysts with minimal content of catalytically active noble metals are essential for the transition to the clean hydrogen economy. Catalyst supports that can immobilize and stabilize catalytic nanoparticles and facilitate the supply of electrons and reactants to the catalysts are needed. Being hydrophilic and more conductive compared with carbons, MXenes have shown promise as catalyst supports. However, the controlled assembly of their 2D sheets creates a challenge. This study established a lattice engineering approach to regulate the assembly of exfoliated Ti3C2Tx MXene nanosheets with guest cations of various sizes. The enlargement of guest cations led to a decreased interlayer interaction of MXene lamellae and increased surface accessibility, allowing intercalation of Pd nanoparticles. Stabilization of Pd nanoparticles between interlayer-expanded MXene nanosheets improved their electrocatalytic activity. The Pd-immobilized K+-intercalated MXene nanosheets (PdKMX) demonstrated exceptional electrocatalytic performance for the hydrogen evolution reaction with the lowest overpotential of 72 mV (@10 mA cm-2) and the highest turnover frequency of 1.122 s-1 (@ an overpotential of 100 mV), which were superior to those of the state-of-the-art Pd nanoparticle-based electrocatalysts. Weakening of the interlayer interaction during self-assembly with K+ ions led to fewer layers in lamellae and expansion of the MXene in the c direction during Pd anchoring, providing numerous surface-active sites and promoting mass transport. In situ spectroscopic analysis suggests that the effective interfacial electron injection from the Pd nanoparticles strongly immobilized on interlayer-expanded PdKMX may be responsible for the improved electrocatalytic performance.

4.
Molecules ; 29(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38398519

ABSTRACT

To enhance the bioavailability and antihypertensive effect of the anti-depressant drug citalopram hydrobromide (CTH) we developed a sustained-release transdermal delivery system containing CTH. A transdermal diffusion meter was first used to determine the optimal formulation of the CTH transdermal drug delivery system (TDDS). Then, based on the determined formulation, a sustained-release patch was prepared; its physical characteristics, including quality, stickiness, and appearance, were evaluated, and its pharmacokinetics and irritation to the skin were evaluated by applying it to rabbits and rats. The optimal formulation of the CTH TDDS was 49.2% hydroxypropyl methyl cellulose K100M, 32.8% polyvinylpyrrolidone K30, 16% oleic acid-azone, and 2% polyacrylic acid resin II. The system continuously released an effective dose of CTH for 24 h and significantly enhanced its bioavailability, with a higher area under the curve, good stability, and no skin irritation. The developed CTH TDDS possessed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it has the potential for clinical application as an antidepressant.


Subject(s)
Citalopram , Skin Absorption , Rats , Rabbits , Animals , Citalopram/pharmacology , Citalopram/metabolism , Delayed-Action Preparations/pharmacology , Administration, Cutaneous , Skin , Drug Delivery Systems , Transdermal Patch
6.
Chemistry ; 30(10): e202302936, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38012074

ABSTRACT

Protein engineering of cytochrome P450s has enabled these biocatalysts to promote a variety of abiotic reactions beyond nature's repertoire. Integrating such non-natural transformations with microbial biosynthetic pathways could allow sustainable enzymatic production of modified natural product derivatives. In particular, trifluoromethylation is a highly desirable modification in pharmaceutical research due to the positive effects of the trifluoromethyl group on drug potency, bioavailability, and metabolic stability. This study demonstrates the biosynthesis of non-natural trifluoromethyl-substituted cyclopropane derivatives of natural monoterpene scaffolds using an engineered cytochrome P450 variant, P411-PFA. P411-PFA successfully catalyzed the transfer of a trifluoromethyl carbene from 2-diazo-1,1,1-trifluoroethane to the terminal alkenes of several monoterpenes, including L-carveol, carvone, perilla alcohol, and perillartine, to generate the corresponding trifluoromethylated cyclopropane products. Furthermore, integration of this abiotic cyclopropanation reaction with a reconstructed metabolic pathway for L-carveol production in Escherichia coli enabled one-step biosynthesis of a trifluoromethylated L-carveol derivative from limonene precursor. Overall, amalgamating synthetic enzymatic chemistry with established metabolic pathways represents a promising approach to sustainably produce bioactive natural product analogs.


Subject(s)
Biological Products , Cyclohexane Monoterpenes , Cytochrome P-450 Enzyme System , Cytochrome P-450 Enzyme System/metabolism , Monoterpenes/metabolism , Escherichia coli/metabolism , Cyclopropanes/chemistry , Biological Products/metabolism
7.
J Hazard Mater ; 464: 132986, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37979424

ABSTRACT

Laser desorption ionization mass spectrometry (LDI-MS) aroused intensive concerns for the merits of label-free and high-throughput analysis. Here, we designed a silver nanoparticles (AgNP)-modified indium vanadate nanosheets with doping samarium (AgNP@InVO4:Sm) nanosheets. The developed AgNP@InVO4:Sm nanosheets (AIVON) were synthesized based on the microemulsion-mediated solvothermal method and ultraviolet-assisted in situ formation of AgNP, then for the first time applied as a matrix in LDI-MS analysis. With the advantages including enhanced MS signal, little matrix-related background, high reproducibility, and good salt tolerance, AIVON exhibited much better prospect than non-modified indium vanadate nanosheets with doping samarium (IVON) and traditional organic matrix, thus allowing sensitive MS detection for a wide range of low-molecular-weight (LMW) molecules. Moreover, by coupling with headspace sampling thin-film microextraction (TFME), a kind of representative pollutant chlorophenols were identified and quantified via AIVON-assisted LDI-MS in environmental and biological samples. Volatile LMW pollutants could be preconcentrated after TFME, hence a sensitive and rapid assay with negligible sample matrix effect was realized by using AIVON-assisted LDI-MS. It is anticipated that this novel nano-matrix AIVON and the proposed TFME coupling detection strategy were of competitive merits for LDI-MS analysis in the fields of environment, biomedicine, and agriculture.


Subject(s)
Environmental Pollutants , Metal Nanoparticles , Vanadates , Indium , Reproducibility of Results , Samarium , Silver , Mass Spectrometry , Lasers , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
J Phys Chem Lett ; 14(50): 11342-11349, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38064589

ABSTRACT

Two challenges facing machine learning tasks in materials science are data set construction and descriptor design. Graph neural networks circumvent the need for empirical descriptors by encoding geometric information in graphs. Large language models have shown promise for database construction via text extraction. Here, we apply OpenAI's Generative Pre-trained Transformer 4 (GPT-4) and the Crystal Graph Convolutional Neural Network (CGCNN) to the problem of discovering rare-earth-doped phosphors for solid-state lighting. We used GPT-4 to datamine the chemical formulas and emission wavelengths of 264 Eu2+-doped phosphors from 274 articles. A CGCNN model was trained on the acquired data set, achieving a test R2 of 0.77. Using this model, we predicted the emission wavelengths of over 40 000 inorganic materials. We also used transfer learning to fine-tune a bandgap-predicting CGCNN model for emission wavelength prediction. The workflow requires minimal human supervision and is generalizable to other fields.

9.
J Nanobiotechnology ; 21(1): 475, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072936

ABSTRACT

This study presents the first-ever synthesis of samarium-doped indium vanadate nanosheets (IVONSs:Sm) via microemulsion-mediated solvothermal method. The nanosheets were subsequently utilized as a nano-matrix in laser desorption/ionization mass spectrometry (LDI-MS). It was discovered that the as-synthesized IVONSs:Sm possessed the following advantages: improved mass spectrometry signal, minimal matrix-related background, and exceptional stability in negative-ion mode. These qualities overcame the limitations of conventional matrices and enabled the sensitive detection of small biomolecules such as fatty acids. The negative-ion LDI mechanism of IVONSs:Sm was examined through the implementation of density functional theory simulation. Using IVONSs:Sm-assisted LDI-MS, fingerprint recognitions based on morphology and chemical profiles of endogenous/exogenous compounds were also achieved. Notably, crucial characteristics such as the age of an individual's fingerprints and their physical state could be assessed through the longitudinal monitoring of particular biomolecules (e.g., ascorbic acid, fatty acid) or the specific biomarker bilirubin glucuronide. Critical information pertinent to the identification of an individual would thus be facilitated by the analysis of the compounds underlying the fingerprint patterns.


Subject(s)
Indium , Vanadates , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Fatty Acids , Lasers
10.
J Transl Med ; 21(1): 739, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858181

ABSTRACT

BACKGROUND: Hepatic ischemia-reperfusion (IR) injury is the primary reason for complications following hepatectomy and liver transplantation (LT). Insulin-induced gene 2 (Insig2) is one of several proteins that anchor the reticulum in the cytoplasm and is essential for metabolism and inflammatory responses. However, its function in IR injury remains ambiguous. METHODS: Insig2 global knock-out (KO) mice and mice with adeno-associated-virus8 (AAV8)-delivered Insig2 hepatocyte-specific overexpression were subjected to a 70% hepatic IR model. Liver injury was assessed by monitoring hepatic histology, inflammatory responses, and apoptosis. Hypoxia/reoxygenation stimulation (H/R) of primary hepatocytes and hypoxia model induced by cobalt chloride (CoCl2) were used for in vitro experiments. Multi-omics analysis of transcriptomics, proteomics, and metabolomics was used to investigate the molecular mechanisms underlying Insig2. RESULTS: Hepatic Insig2 expression was significantly reduced in clinical samples undergoing LT and the mouse IR model. Our findings showed that Insig2 depletion significantly aggravated IR-induced hepatic inflammation, cell death and injury, whereas Insig2 overexpression caused the opposite phenotypes. The results of in vitro H/R experiments were consistent with those in vivo. Mechanistically, multi-omics analysis revealed that Insig2 is associated with increased antioxidant pentose phosphate pathway (PPP) activity. The inhibition of glucose-6-phosphate-dehydrogenase (G6PD), a rate-limiting enzyme of PPP, rescued the protective effect of Insig2 overexpression, exacerbating liver injury. Finally, our findings indicated that mouse IR injury could be attenuated by developing a nanoparticle delivery system that enables liver-targeted delivery of substrate of PPP (glucose 6-phosphate). CONCLUSIONS: Insig2 has a protective function in liver IR by upregulating the PPP activity and remodeling glucose metabolism. The supplementary glucose 6-phosphate (G6P) salt may serve as a viable therapeutic target for alleviating hepatic IR.


Subject(s)
Hepatocytes , Insulins , Liver Diseases , Reperfusion Injury , Animals , Mice , Antioxidants/metabolism , Apoptosis/genetics , Glucose/metabolism , Hepatectomy/adverse effects , Hepatocytes/metabolism , Hepatocytes/pathology , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Insulins/metabolism , Liver/blood supply , Liver/injuries , Liver/metabolism , Liver/pathology , Liver Diseases/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/surgery , Liver Transplantation/adverse effects , Phosphates/metabolism , Phosphates/pharmacology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control
11.
Article in English | MEDLINE | ID: mdl-37889474

ABSTRACT

Donor and acceptor ions serving as extrinsic defects in piezoelectrics are mostly used to improve the performance merits to satisfy the industrial application. However, the conventional doping strategy is unable to overcome the inherent trade-off between the piezoelectric coefficient (d33) and mechanical quality factor (Qm). Herein, inspired by the valence state variation observed in manganese oxides during sintering, this study focuses on manipulating intrinsic oxygen vacancies and extrinsic manganese defects in potassium sodium niobate (KNN) ceramics via heat treatment. The annealing process results in a simultaneous improvement in both d33 (20%) and Qm (80%), leading to comparable performance with commercial PZT-5A ceramics and enabling their application in atomizer components. Moreover, the mechanism of manganese occupation and diffusion is proposed by an extended X-ray absorption fine structure and density functional theory analysis. The improved electromechanical performance in the annealed KNN ceramic is associated with the optimized redistribution of acceptor and donor manganese defects, which is facilitated by the recombination of oxygen vacancies. This work breaks longstanding obstacles in comprehending the existing forms of manganese in KNN and offers potential in popularizing KNN-based piezoceramics to replace traditional PZT lead-based counterparts in the industrial market.

12.
Heliyon ; 9(9): e19344, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662817

ABSTRACT

This study sought to establish a real-time reverse transcription (RT)-PCR method to differentially detect canine distemper virus (CDV) wild-type and vaccine strains. To this end, a pair of CDV universal primers and two specific minor groove binder (MGB) probes, harboring a T/C substitution in the hemagglutinin (H) gene, were designed. Using a recombinant plasmid expressing the H gene of the CDV wild-type or vaccine strain as standards, a sensitive and specific multiplex real-time RT-PCR was established for quantitative and differential detection of CDV wild-type and vaccine strains. The limit of detection for this multiplex assay was 22.5 copies/µL and 2.98 copies/µL of viral RNA for wild-type and vaccine strains, respectively. Importantly, the wild-type and vaccine MGB probes specifically hybridized different genotypes of wild-type CDV circulating in China as well as globally administered vaccine viruses, respectively, with no cross-reactivity observed with non-CDV viruses. Moreover, this method was successfully applied for the quantitative detection of CDV RNA in tissue samples of experimentally infected breeding foxes, raccoon dogs, and minks. Additionally, the multiplex real-time RT-PCR was able to detect the viral RNA in the whole blood samples as early as 3 days post-infection, 3 to 4 days prior to the onset of clinical signs in these CDV infection animals. Hence, the established multiplex real-time RT-PCR method is useful for differentiating wild-type CDV and vaccine strains in China, and for conducting canine distemper early diagnosis as well as dynamic mechanism of CDV replication studies in vivo.

13.
Viruses ; 15(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37766279

ABSTRACT

Canine distemper (CD), caused by canine distemper virus (CDV), is a highly contagious and lethal disease in domestic and wild carnivores. Although CDV live-attenuated vaccines have reduced the incidence of CD worldwide, low levels of protection are achieved in the presence of maternal antibodies in juvenile animals. Moreover, live-attenuated CDV vaccines may retain residual virulence in highly susceptible species and cause disease. Here, we generated several CDV DNA vaccine candidates based on the biscistronic vector (pIRES) co-expressing virus wild-type or codon-optimized hemagglutinin (H) and nucleocapsid (N) or ferret interferon (IFN)-γ, as a molecular adjuvant, respectively. Apparently, ferret (Mustela putorius furo)-specific codon optimization increased the expression of CDV H and N proteins. A ferret model of CDV was used to evaluate the protective immune response of the DNA vaccines. The results of the vaccinated ferrets showed that the DNA vaccine co-expressing the genes of codon-optimized H and ferret IFN-γ (poptiH-IRES-IFN) elicited the highest anti-CDV serum-neutralizing antibodies titer (1:14) and cytokine responses (upregulated TNF-α, IL-4, IL-2, and IFN-γ expression) after the third immunization. Following vaccination, the animals were challenged with a lethal CDV 5804Pe/H strain with a dose of 105.0 TCID50. Protective immune responses induced by the DNA vaccine alleviated clinical symptoms and pathological changes in CDV-infected ferrets. However, it cannot completely prevent virus replication and viremia in vivo as well as virus shedding due to the limited neutralizing antibody level, which eventually contributed to a survival rate of 75% (3/4) against CDV infection. Therefore, the improved strategies for the present DNA vaccines should be taken into consideration to develop more protective immunity, which includes increasing antigen expression or alternative delivery routes, such as gene gun injection.


Subject(s)
Distemper Virus, Canine , Distemper , Vaccines, DNA , Animals , Dogs , Ferrets , Vaccines, DNA/genetics , Hemagglutinins/genetics , Distemper Virus, Canine/genetics , Interferon-gamma , Antibodies, Neutralizing , Distemper/prevention & control
14.
ACS Synth Biol ; 12(9): 2715-2724, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37651305

ABSTRACT

Efficient and cost-effective conversion of CO2 to biomass holds the potential to address the climate crisis. Light-driven CO2 conversion can be realized by combining inorganic semiconductors with enzymes or cells. However, designing enzyme cascades for converting CO2 to multicarbon compounds is challenging, and inorganic semiconductors often possess cytotoxicity. Therefore, there is a critical need for a straightforward semiconductor biohybrid system for CO2 conversion. Here, we used a visible-light-responsive and biocompatible C3N4 porous nanosheet, decorated with formate dehydrogenase, formaldehyde dehydrogenase, and alcohol dehydrogenase to establish an enzyme-photocoupled catalytic system, which showed a remarkable CO2-to-methanol conversion efficiency with an apparent quantum efficiency of 2.48% in the absence of externally added electron mediator. To further enable the in situ transformation of methanol into biomass, the enzymes were displayed on the surface of Komagataella phaffii, which was further coupled with C3N4 to create an organic semiconductor-enzyme-cell hybrid system. Methanol was produced through enzyme-photocoupled CO2 reduction, achieving a rate of 4.07 mg/(L·h), comparable with reported rates from photocatalytic systems employing mediators or photoelectrochemical cells. The produced methanol can subsequently be transported into the cell and converted into biomass. This work presents a sustainable, environmentally friendly, and cost-effective enzyme-photocoupled biocatalytic system for efficient solar-driven conversion of CO2 within a microbial cell.


Subject(s)
Carbon Dioxide , Methanol , Alcohol Dehydrogenase/genetics , Biocatalysis , Biological Transport
15.
Sci Adv ; 9(27): eadg7919, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37406131

ABSTRACT

GeTe-based materials with superior thermoelectric properties promise great potential for waste heat recovery. However, the lack of appropriate diffusion barrier materials (DBMs) limits not only the energy conversion efficiency but also the service reliability of the thermoelectric devices. Here, we propose a design strategy based on phase equilibria diagrams from first-principles calculations and identify transition metal germanides (e.g., NiGe and FeGe2) as the DBMs. Our validation experiment confirms the excellent chemical and mechanical stabilities of the interfaces between the germanides and GeTe. We also develop a process for scaling up the GeTe production. Combining with module geometry optimization, we fabricate an eight-pair module using mass-produced p-type Ge0.89Cu0.06Sb0.08Te and n-type Yb0.3Co4Sb12 and achieve a record-high efficiency of 12% among all reported single-stage thermoelectric modules. Our work thus paves the way for waste heat recovery based on completely lead-free thermoelectric technology.

16.
Sci Adv ; 9(30): eadh1789, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37506201

ABSTRACT

Fast and high-resolution x-ray imaging demands scintillator films with negligible afterglow, high scintillation yield, and minimized cross-talk. However, grain boundaries (GBs) are abundant in polycrystalline scintillator film, and, for current inorganic scintillators, detrimental dangling bonds at GBs inevitably extend radioluminescence lifetime and increase nonradiative recombination loss, deteriorating afterglow and scintillation yield. Here, we demonstrate that scintillators with one-dimensional (1D) crystal structure, Cs5Cu3Cl6I2 explored here, possess benign GBs without dangling bonds, yielding nearly identical afterglow and scintillation yield for single crystals and polycrystalline films. Because of its 1D crystal structure, Cs5Cu3Cl6I2 films with desired columnar morphology are easily obtained via close space sublimation, exhibit negligible afterglow (0.1% at 10 ms) and high scintillation yield (1.2 times of CsI:Tl). We have also demonstrated fast x-ray imaging with 27 line pairs mm-1 resolution and frame rate up to 33 fps, surpassing most existing scintillators. We believe that the 1D scintillators can greatly boost x-ray imaging performance.

17.
Small ; 19(42): e2302935, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37322314

ABSTRACT

Organic-inorganic hybrid materials often face a stability challenge. ß-ZnTe(en)0.5 , which uniquely has over 15-year real-time degradation data, is taken as a prototype structure to demonstrate an accelerated thermal aging method for assessing the intrinsic and ambient-condition long-term stability of hybrid materials. Micro-Raman spectroscopy is used to investigate the thermal degradation of ß-ZnTe(en)0.5 in a protected condition and in air by monitoring the temperature dependences of the intrinsic and degradation-product Raman modes. First, to understand the intrinsic degradation mechanism, the transition state of the degradation is identified, then using a density functional theory, the intrinsic energy barrier between the transition state and ground state is calculated to be 1.70 eV, in excellent agreement with the measured thermal degradation barrier of 1.62 eV in N2 environment. Second, for the ambient-condition degradation, a reduced thermal activation barrier of 0.92 eV is obtained due to oxidation, corresponding to a projected ambient half-life of 40 years at room temperature, in general agreement with the experimental observation of no apparent degradation over 15 years. Furthermore, the study reveals a mechanism, conformation distortion enhanced stability, which plays a pivotal role in forming the high kinetic barrier, contributing greatly to the impressive long-term stability of ß-ZnTe(en)0.5 .

18.
J Cell Physiol ; 238(8): 1909-1920, 2023 08.
Article in English | MEDLINE | ID: mdl-37357506

ABSTRACT

Human embryonic stem cells (hESCs) have great potential for developmental biology and regenerative medicine. However, extensive apoptosis often occurs when hESCs respond to various stresses or injuries. Understanding the molecular control and identifying new factors associated with hESC survival are fundamental to ensure the high quality of hESCs. In this study, we report that PRPF8, an RNA spliceosome component, is essential for hESC survival. PRPF8 knockdown (KD) induces p53 protein accumulation and activates the p53 pathway, leading to apoptosis in hESCs. Strikingly, silencing of p53 rescues PRPF8 KD-induced apoptosis, indicating that PRPF8 KD triggers hESC apoptosis through activating the p53 pathway. In search for the mechanism by which p53 pathway is activated by PRPF8 KD, we find that PRPF8 KD alters alternative splicing of many genes, including PIRH2 which encodes an E3 ubiquitin ligase of p53. PIRH2 has several isoforms such as PIRH2A, PIRH2B, and PIRH2C. Intriguingly, PRPF8 KD specifically increases the transcript level of the PIRH2B isoform, which lacks a RING domain and E3 ligase activity. Functionally, PIRH2B KD partially rescues the reduction in cell numbers and upregulation of P21 caused by PRPF8 KD in hESCs. The finding suggests that PRPF8 controls alternative splicing of PIRH2 to maintain the balance of p53 pathway activity and survival of hESCs. The PRPF8/PIRH2/p53 axis identified here provides new insights into how p53 pathway and hESC survival are precisely regulated at multiple layers, highlighting an important role of posttranscriptional machinery in supporting hESC survival.


Subject(s)
Alternative Splicing , Tumor Suppressor Protein p53 , Humans , Alternative Splicing/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
19.
J Chem Phys ; 158(24)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37358218

ABSTRACT

Silver sulfide in monoclinic phase (α-Ag2S) has attracted significant attention owing to its metal-like ductility and promising thermoelectric properties near room temperature. However, first-principles studies on this material by density functional theory calculations have been challenging as both the symmetry and atomic structure of α-Ag2S predicted from such calculations are inconsistent with experimental findings. Here, we propose that a dynamical approach is imperative for correctly describing the structure of α-Ag2S. The approach is based on a combination of ab initio molecular dynamics simulation and deliberately chosen density functional considering both proper treatment of the van der Waals interaction and on-site Coulomb interaction. The obtained lattice parameters and atomic site occupations of α-Ag2S are in good agreement with experimental data. A stable phonon spectrum at room temperature can be obtained from this structure, which also yields a bandgap in accord with experimental measurements. The dynamical approach thus paves the way for studying this important ductile semiconductor in not only thermoelectric but also optoelectronic applications.

20.
Inorg Chem ; 62(19): 7376-7384, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37134020

ABSTRACT

Copper-based halides have been found to be a new family of lead-free materials with high stability and superior optoelectrical properties. In this work, we report the photoluminescence of the known (C8H14N2)CuBr3 and the discovery of three new compounds, (C8H14N2)CuCl3, (C8H14N2)CuCl3·H2O, and (C8H14N2)CuI3, which all exhibit efficient light emissions. All these compounds have monoclinic structures with the same space group (P21/c) and zero-dimensional (0D) structures, which can be viewed as the assembly of promising aromatic molecules and different copper halide tetrahedrons. Upon the irradiation of deep ultraviolet light, (C8H14N2)CuCl3, (C8H14N2)CuBr3,, and (C8H14N2)CuI3 show green emission peaking at ∼520 nm with a photoluminescent quantum yield (PLQY) of 3.38, 35.19, and 17.81%, while (C8H14N2)CuCl3·H2O displays yellow emission centered at ∼532 nm with a PLQY of 2.88%. A white light-emitting diode (WLED) was successfully fabricated by employing (C8H14N2)CuBr3 as a green emitter, demonstrating the potential of copper halides for applications in the green lighting field.

SELECTION OF CITATIONS
SEARCH DETAIL
...