Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Colloid Interface Sci ; 628(Pt B): 524-533, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36007417

ABSTRACT

The sluggish kinetic of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) severely hampers the commercial application of electrochemical water splitting, promoting the urgent exploration of high-efficient bifunctional electrocatalysts. Heteroatom doping and structure engineering have been identified as the most effective strategies to boost the catalytic activity of electrocatalysts. Herein, Mn doping and hollow structure were integrated in the design of Co-based transition metal phosphide catalyst to prepare Mn-CoP/Co2P nanotubes (denoted as Mn-CP NTs) by a facile template-free method. Confirmed by characterization analysis, the introduced Mn species were in high dispersion in the regular CoP/Co2P hollow tubular framework. Such a favorable design in composition and structure effectively boosted the catalytic activity of Mn-CP NTs toward electrochemical water splitting. The Mn-CP NTs showed superior HER and OER activity demonstrated by the low overpotentials of 82 mV (vs HER) and 309 mV (vs OER) at the current density of 10 mA cm-2, as well as the satisfactory durability. When used as both cathode and anode in electrolyzer for overall water splitting, only a low cell voltage of 1.67 V was required for the Mn-CP NTs to drive 10 mA cm-2, accompanied with excellent stability confirmed by over 50 h test.

2.
Chem Commun (Camb) ; 58(49): 6954-6957, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35642611

ABSTRACT

Inspired by the working principle of natural spiderweb and long-persistence phosphors, we have synthesized a spiderweb-like nanocomposite in which CoS quantum dots are confined in N-doped carbon frameworks/carbon nanotubes (CNTs). The intimate combination of three-dimensional conductive networks of CoS/CNTs with abundant active sites allows effective capture of sulfate radicals via both physical confinement and chemical bonding and accelerates the redox kinetics significantly. Furthermore, in virtue of the light storing and luminescence behaviors of long-persistence phosphors, the all-weather CoS/CNTs produced can realize an optimum degradation efficiency of 64% under dark conditions. Overall, this work reveals a significant step forward for building a desirable all-weather catalyst with abundant active sites for potential use in degradation under dark conditions.

3.
Small Methods ; 6(5): e2200148, 2022 May.
Article in English | MEDLINE | ID: mdl-35324091

ABSTRACT

Layered LiCoO2 (LCO) is one of the most important cathodes for portable electronic products at present and in the foreseeable future. It becomes a continuous push to increase the cutoff voltage of LCO so that a higher capacity can be achieved, for example, a capacity of 220 mAh g-1 at 4.6 V compared to 175 mAh g-1 at 4.45 V, which is unfortunately accompanied by severe capacity degradation due to the much-aggravated side reactions and irreversible phase transitions. Accordingly, strict control on the LCO becomes essential to combat the inherent instability related to the high voltage challenge for their future applications. This review begins with a discussion on the relationship between the crystal structures and electrochemical properties of LCO as well as the failure mechanisms at 4.6 V. Then, recent advances in control strategies for 4.6 V LCO are summarized with focus on both bulk structure and surface properties. One closes this review by presenting the outlook for future efforts on LCO-based lithium ion batteries (LIBs). It is hoped that this work can draw a clear map on the research status of 4.6 V LCO, and also shed light on the future directions of materials design for high energy LIBs.

4.
ACS Appl Mater Interfaces ; 14(11): 13379-13387, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35266694

ABSTRACT

The development of potassium-ion batteries (PIBs) is challenged by the shortage of stable cathode materials capable of reversibly hosting the large-sized K+ (1.38 Å), which is prone to cause severe structural degradation and complex phase evolution during the potassiation/depotassiation process. Here, we identified that anionic doping of the layered oxides for PIBs is effective to combat their capacity fading at high voltage (>4.0 V). Taking P2-type K2/3Mn7/9Ni1/9Ti1/9O17/9F1/9 (KMNTOF) as an example, we showed that the partial substitution of O2- by F- enlarged the interlayer distance of the K2/3Mn7/9Ni1/9Ti1/9O2 (KMNTO), which becomes more favorable for fast K+ transition without violent structural destruction. Meanwhile, based on the experimental data and theoretical results, we identified that the introduction of F- anions effectively increased the redox-active Mn cationic concentration by lowering the average valence of the Mn element, accordingly providing more reversible capacity derived from the Mn3+/4+ redox couple, rather than oxygen redox. This anionic doping strategy enables the KMNTOF cathode to deliver a high reversible capacity of 132.5 mAh g-1 with 0.53 K+ reversible (de)intercalation in the structure. We expect that the discovery provides new insights into structural engineering for pursuing stable cathodes to facilitate the future applications of high-performance PIBs.

5.
Chem Commun (Camb) ; 58(15): 2556-2559, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35103727

ABSTRACT

A Li3PO4 nanocoating around a nickel-rich cathode material was successfully constructed via controlling the reaction between the electrode material and a preformed phosphorus-containing polymeric nanoshell; this not only effectively tackles the alkali residue challenge, but it also contributes to much-improved electrochemical performance being shown by a high-energy cathode.

6.
J Am Chem Soc ; 144(5): 2179-2188, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35080388

ABSTRACT

The application of solid-state batteries (SSBs) is challenged by the inherently poor interfacial contact between the solid-state electrolyte (SSE) and the electrodes, typically a metallic lithium anode. Building artificial intermediate nanofilms is effective in tackling this roadblock, but their implementation largely relies on vapor-based techniques such as atomic layer deposition, which are expensive, energy-intensive, and time-consuming due to the monolayer deposited per cycle. Herein, an easy and low-cost wet-chemistry fabrication process is used to engineer the anode/solid electrolyte interface in SSBs with nanoscale precision. This coordination-assisted deposition is initiated with polyacrylate acid as a functional polymer to control the surface reaction, which modulates the distribution and decomposition of metal precursors to reliably form a uniform crack-free and flexible nanofilm of a large variety of metal oxides. For demonstration, artificial Al2O3 interfacial nanofilms were deposited on a ceramic SSE, typically garnet-structured Li6.5La3Zr1.5Ta0.5O12 (LLZT), that led to a significant decrease in the Li/LLZT interfacial resistance (from 2079.5 to 8.4 Ω cm2) as well as extraordinarily long cycle life of the assembled SSBs. This strategy enables the use of a nickel-rich LiNi0.83Co0.07Mn0.1O2 cathode to deliver a reversible capacity of 201.5 mAh g-1 at a considerable loading of 4.8 mg cm-2, featuring performance metrics for an SSB that is competitive with those of traditional Li-ion systems. Our study demonstrates the potential of solution-based routes as an affordable and scalable manufacturing alternative to vapor-based deposition techniques that can accelerate the development of SSBs for practical applications.

7.
Angew Chem Int Ed Engl ; 60(39): 21377-21383, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34409712

ABSTRACT

Hollow metal oxide microspheres (HMMs) have drawn enormous attention in different research fields. Reliable and scalable synthetic protocols applicable for a large variety of metal oxides are in emergent demand. Here we demonstrated that polymer hydrogel, such as the resorcinol formaldehyde (RF) one, existed as an efficient synthetic platform to build HMMs. Specifically, the RF gel forms stacked RF microspheres enlaced with its aqueous phase, where the following evaporation of the highly dispersed water leads to a gel-assisted precipitation (GAP) of the dissolved metal precursor onto the embedded polymeric solids suited for the creation of HMMs. By taking advantage of the structural features of hydrogel, this synthesis design avoids the delicate control on the usually necessitated coating process and provides a simple and effective synthetic process versatile for functional HMMs, particularly Nb2 O5 as a high-performance electrode material in Li-ion intercalation pseudocapacitor.

8.
Adv Mater ; 33(36): e2100409, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34270806

ABSTRACT

Due to the obvious advantage in potassium reserves, potassium-ion batteries (PIBs) are now receiving increasing research attention as an alternative energy storage system for lithium-ion batteries (LIBs). Unfortunately, the large size of K+ makes it a challenging task to identify suitable electrode materials, particularly cathode ones that determine the energy density of PIBs, capable of tolerating the serious structural deformation during the continuous intercalation/deintercalation of K+ . It is therefore of paramount importance that proper design principles of cathode materials be followed to ensure stable electrochemical performance if a practical application of PIBs is expected. Herein, the current knowledge on the structural engineering of cathode materials acquired during the battle against its performance degradation is summarized. The K+ storage behavior of different types of cathodes is discussed in detail and the structure-performance relationship of materials sensitive to their different lattice frameworks is highlighted. The key issues facing the future development of different categories of cathode materials are also highlighted and perspectives for potential approaches and strategies to promote the further development of PIBs are provided.

9.
J Hazard Mater ; 417: 126052, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34000702

ABSTRACT

The development of synthetic methods to obtain high value-added mesoporous Al-MCM-41 from a low-cost silicon-aluminum source with low toxicity is an active research topic in solid waste resource utilization. In particular, the controlled synthesis of MCM-41 with a two-level pore distribution is a challenging task. In this work, the synthesis of unimodal and bimodal mesoporous Al-MCM-41s was achieved using acids with different degrees of ionization from coal gasification fine residue (CGFR) as bulk solid waste generated by the coal gasification process. We determined that the degree of acid ionization affected the self-assembly of inorganic/organic species as well as condensation processes, resulting in some changes of the hexagonal mesoscopic structure. The unimodal mesoporous Al-MCM-41 with acetic acid HAc and bimodal mesoporous Al-MCM-41s with an inorganic acid environment (HCl, HNO3 or H2SO4) could be effectively prepared in a controllable manner by the silicon and aluminum source obtained at alkali dissolution time 6 h and crystallization conditions at pH 10.5 and 383 K in 72 h. Moreover, the synthesis of Al-MCM-41-HAc with different SiO2/Al2O3 molar ratios (18-89) could also be realized by different alkali dissolution times. And alkali dissolution time (2-24 h) and the crystallization conditions (pH 4.5-11.5, temperatures 373-393 K, and time 48-96 h) also affected the formation of unimodal and bimodal mesoporous Al-MCM-41-HAc. In addition, the maximum adsorption amount onto bimodal mesoporous Al-MCM-41-H2SO4 (476.19 mg g-1 at 308 K) was larger than that onto unimodal mesoporous Al-MCM-41-HAc (243.90 mg g-1 at 303 K). The mesoporous Al-MCM-41s showed good stability.

10.
ACS Omega ; 6(4): 2949-2955, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33553913

ABSTRACT

A novel Mn-doped Fe-based metal-organic framework (MOF) Fenton-like catalyst was prepared for the removal of wastewater organic pollutants. The catalyst exhibited good degradation performance, stability, and recyclability for the removal of phenol from water with a maximum catalytic efficiency of 96%. Incorporating a long persistent phosphor in the MOF ensured optimum performance in the dark.

11.
Acc Chem Res ; 54(1): 221-231, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33284018

ABSTRACT

Hollow carbon-based nanospheres (HCNs) have been demonstrated to show promising potential in a large variety of research fields, particularly electrochemical devices for energy conversion/storage. The current synthetic protocols for HCNs largely rely on template-based routes (TBRs), which are conceptually straightforward in creating hollow structures but challenged by the time-consuming operations with a low yield in product as well as serious environmental concerns caused by hazardous etching agents. Meanwhile, they showed inadequate ability to build complex carbon-related architectures. Innovative strategies for HCNs free from extra templates thus are highly desirable and are expected to not only ensure precise control of the key structural parameters of hollow architectures with designated functionalities, but also be environmentally benign and scalable approaches suited for their practical applications.In this Account, we outline our recent research progress on the development of template-free protocols for the creation of HCNs with a focus on the acquired mechanical insight into the hollowing mechanism when no extra templates were involved. We demonstrated that carbon-based particles themselves could act as versatile platforms to create hollow architectures through an effective modulation of their inner chemistry. By means of reaction control, the precursor particles were synthesized into solid ones with a well-designed inhomogeneity inside in the form of different chemical parameters such as molecular weight, crystallization degree, and chemical reactivity, by which we not only can create hollow structures inside particles but also have the ability to tune the key features including compositions, porosity, and dimensional architectures. Accordingly, the functionalities of the prepared HCNs could be systematically altered or optimized for their applications. Importantly, the discussed synthesis approaches are facile and environmentally benign processes with potential for scale-up production.The nanoengineering of HNCs is found to be of special importance for their application in a large variety of electrochemical energy storage and conversion systems where the charge transfer and structural stability become a serious concern. Particular attention in this Account is therefore directed to the potential of HCNs in battery systems such as sodium ion batteries (NIBs) and potassium ion batteries (KIBs), whose electrochemical performances are plagued by the destructive volumetric deformation and sluggish charge diffusion during the intercalation/deintercalation of large-size Na+ or K+. We demonstrated that precise control of the multidimensional factors of the HCNs is critical to offer an optimized design of sufficient reactive sites, excellent charge and mass transport kinetics, and resilient electrode structure and also provide a model system suitable for the study of complicated metal-ion storage mechanisms, such as Na+ storage in a hard carbon anode. We expect that this Account will spark new endeavors in the development of HCNs for various applications including energy conversion and storage, catalysis, biomedicine, and adsorption.

12.
J Am Chem Soc ; 142(42): 17897-17902, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33044819

ABSTRACT

Recent advances in spherical mesoporous metal oxides (SMMOs) have demonstrated their enormous potential in a large variety of research fields. However, a direct creation of these materials with precise control on their key shape features, particularly pore architectures, remains a major challenge as compared to the widely explored counterpart of silica. Here, using Al2O3 as an example, we identified that deposition kinetics in solution played an essential role in the construction of different SMMOs. Specifically, a controlled Al3+ precipitation is critical to maintaining the electrostatic interaction between the inorganic precursors and the molecular templates, thereby achieving a designable assembly of these two components toward uniform mesoporous Al2O3-based nanospheres. We demonstrated that such a synthesis strategy is not only able to precisely control the channel orientations from concentric to radial and dendritic, a synthesis capability impeded so far for SMMOs, but is readily applicable to other metal oxides. Our study showed that the growth-kinetics control is a simple but powerful synthesis protocol and opened up a multifunctional platform to achieve systematic design of SMMOs for their future applications.

13.
ACS Appl Mater Interfaces ; 12(13): 15313-15319, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32155043

ABSTRACT

Sodium-ion batteries (SIBs) are promising candidates for large-scale electric energy storage with abundant sodium resources. However, their development is challenged by the availability of satisfactory cathode materials with stable framework to accommodate the transportation of large-sized Na+ (1.02 Å), whose continuous insertion/extraction can easily cause irreversible volumetric deformation in the crystalline material, leading to inevitable structural failure and capacity fading. Here, different from the previous synthesis efforts targeting at Na+ containing compounds, we unveil the possibility of achieving a highly reversible sodiation/desodiation process by resorting to a K+-based layered metal oxide formulated as K0.5Mn0.7Fe0.2Ti0.1O2 (KMFT), which is a P2 type in structure with a wide interlayer spacing to sit K+ (1.38 Å). We demonstrate that an initial K+/Na+ exchange can introduce Na+ into the lattice while a small amount of K+ remains inside, which plays a significant role in ensuring enlarged channels for a fast and stable Na+ diffusion. The KMFT electrode delivers a high initial discharge capacity of 147.1 mA h g-1 at 10 mA g-1 and outstanding long cycling stability with capacity retention of 71.5% after 1000 cycles at 500 mA g-1. These results provide a new design strategy for the development of stable SIBs cathodes to facilitate their future applications.

14.
Adv Mater ; 32(17): e2000505, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32162736

ABSTRACT

Potassium ion batteries (KIBs) have emerged as a promising energy storage system, but the stability and high rate capability of their electrode materials, particularly carbon as the most investigated anode ones, become a primary challenge. Here, it is identified that pitch-derived soft carbon, a nongraphitic carbonaceous species which is paid less attention in the battery field, holds special advantage in KIB anodes. The structural flexibility of soft carbon makes it convenient to tune its crystallization degree, thereby modulating the storage behavior of large-sized K+ in the turbostratic carbon lattices to satisfy the need in structural resilience, low-voltage feature, and high transportation kinetics. It is confirmed that a simple thermal control can produce structurally optimized soft carbon that has much better battery performance than its widely reported carbon counterparts such as graphite and hard carbon. The findings highlight the potential of soft carbon as an interesting category suitable for high-performance KIB electrode and provide insights for understanding the complicated K+ storage mechanisms in KIBs.

15.
ACS Appl Mater Interfaces ; 12(11): 13182-13188, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32097562

ABSTRACT

Hollow carbon nanospheres (HCNs) have found broad applications in a large variety of application fields. Unfortunately, HCNs are known for their tedious operations and are incompetent for scalable synthesis for those widely adopted nanocasting-based routes. Here, we report a facile and highly efficient method for the creation of hollow carbon structures by tuning the growth kinetics of its polymeric precursor. We identified that a controlled polymerization of Cu2+-poly(m-phenylenediamine) (Cu-PmPD) could form nanospheres with modulated inner chemical inhomogeneity, where the core of the particles was low in polymerization degree and water soluble, whereas the outer part was water insoluble. Therefore, a simple water washing of the prepared polymeric particles directly formed hollow nanospheres with a good control on the structural features including their cavity size and shell thickness. HCNs were formed through a following heat treatment and were able to exhibit promising potential as a stable anode material when tested in potassium-ion batteries.

16.
Chem Commun (Camb) ; 55(42): 5894-5897, 2019 May 25.
Article in English | MEDLINE | ID: mdl-31044198

ABSTRACT

A self-hollowing process was demonstrated for the creation of hollow MoS2 nanospheres starting from their amorphous solid precursor, which were spontaneously transformed into a hollow structure during the rearrangement of crystal lattices initiated by a high-temperature treatment, forming hollow-structured materials favorable for their application in sodium ion batteries.

17.
Small ; 15(32): e1901019, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30997739

ABSTRACT

As lithium-ion batteries continue to climb to even higher energy density, they meanwhile cause serious concerns on their stability and reliability during operation. To make sure the electrode materials, particularly cathode materials, are stable upon extended cycles, surface modification becomes indispensable to minimize the undesirable side reaction at the electrolyte-cathode interface, which is known as a critical factor to jeopardizing the electrode performance. This Review is targeted at a precise surface control of cathode materials with focus on the synthetic strategies suitable for a maximized surface protection ensured by a uniform and conformal surface coating. Detailed discussions are taken on the formation mechanism of the designated surface species achieved by either wet-chemistry routes or instrumental ones, with attention to the optimized electrochemical performance as a result of the surface control, accordingly drawing a clear image to describe the synthesis-structure-performance relationship to facilitate further understanding of functional electrode materials. Finally, perspectives regarding the most promising and/or most urgent developments for the surface control of high-energy cathode materials are provided.

18.
J Am Chem Soc ; 141(12): 4900-4907, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30827112

ABSTRACT

The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries.

19.
Gene ; 700: 47-51, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-30902782

ABSTRACT

Intramuscular fat content (IMF) is one of the most significant factors for meat quality affecting tenderness, flavor, and juiciness of meat. For this reason, we aimed to investigate the association of SIRT1 gene polymorphisms with intramuscular fat content in Chinese Qinchuan cattle (Bos taurus). Using DNA sequencing, three single nucleotide polymorphisms (SNPs) within the promoter regions of SIRT1 gene were identified in 535 Qinchuan cattle, and the five haplotypes representing five potential different compositions of polymorphic potential cis-acting elements. Results indicated that both c.-107 G>A and c.-274 A>G were significantly associated with intramuscular fat content in Qinchuan cattle, and Hap5/5 diplotype showed higher (P < 0.05) intramuscular fat content than other combinations (P < 0.05 or P < 0.01). In addition, the Hap5 haplotype had much lower (P < 0.05) transcriptional activity, consistent with the association analysis. Based on our results, the polymorphisms in transcription factor binding sites of SIRT1 gene promoter may affect the transcriptional activity of SIRT1 gene, and thus alter intramuscular fat content in beef cattle.


Subject(s)
Adiposity/genetics , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Sirtuin 1/genetics , 3T3-L1 Cells , Animals , Cattle , Genetic Association Studies , Haplotypes , Mice , Muscle, Skeletal/chemistry , Promoter Regions, Genetic , Sequence Analysis, DNA
20.
Chem Commun (Camb) ; 55(8): 1076-1079, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30617367

ABSTRACT

We have reported an efficient synthetic protocol to build different hollow hybrid nanocomposites with tunable compositions, such as Au/TiO2, Pt/ZrO2, and Au/CexTi1-xO2. The noble metal nanoparticles were well encapsulated in a wall composed of the designated transition metal oxides, showing promising potential as stable catalysts as demonstrated by Pt/ZrO2 for methane combustion.

SELECTION OF CITATIONS
SEARCH DETAIL
...