Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Gene ; : 148735, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944166

ABSTRACT

BACKGROUND: OCIAD2(Ovarian carcinoma immunoreactive antigen-like protein 2) is a protein reported in various cancers. However, the role of OCIAD2 has not been explored in pan-cancer datasets. The purpose of this research lies in analyzing the expression level and prognostic-related value of OCIAD2 in different human cancers, as well as revealing the underlying mechanism in specific cancer type (pancreatic adenocarcinoma, PAAD). METHODS: The correlation between OCIAD2 expression level and clinical relevance in different human cancers was investigated from bioinformatical perspective (GTEx and TCGA). The OCIAD2 expression level and clinical significance in PAAD were explored in GEO datasets and tissue microarray. Functional experiments were used to determine the OCIAD2 cell functions in vitro and in vivo. GSEA, western blot and immunohistochemistry were used to uncover the potential mechanism. RESULTS: OCIAD2 expression level was closely correlated with clinical relevance in many cancer types through pan-cancer analysis, and we found OCIAD2 was highly expressed in PAAD and associated with poorer prognosis. OCIAD2 acted as the promotor of Warburg effect and influenced PAAD cells proliferation, migration and apoptosis. Mechanistically, OCIAD2 upregulation may boost glycolysis in PAAD via activating the AKT signaling pathway in PAAD. CONCLUSIONS: In PAAD, OCIAD2 promotes Warburg effect via AKT signaling pathway and targeting cancer cells metabolic reprogramming could be a potential treatment.

3.
World J Surg Oncol ; 21(1): 239, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37542314

ABSTRACT

BACKGROUND: As digital medicine has exerted profound influences upon diagnosis and treatment of hepatobiliary diseases, our study aims to investigate the accuracy of three-dimensional visualization and evaluation (3DVE) system in assessing the resectability of hilar cholangiocarcinoma (hCCA), and explores its potential clinical value. MATERIALS AND METHODS: The discovery cohort, containing 111 patients from April 2013 to December 2019, was retrospectively included to determine resectability according to revised criteria for unresectability of hCCA. 3D visualization models were reconstructed to evaluate resectability parameters including biliary infiltration, vascular involvement, hepatic atrophy and metastasis. Evaluation accuracy were compared between contrast-enhanced CT and 3DVE. Logistic analysis was performed to identify independent risk factors of R0 resection. A new comprehensive 3DVE classification of hCCA based on factors influencing resectability was proposed to investigate its role in predicting R0 resection and prognosis. The main outcomes were also analyzed in cohort validation, including 34 patients from January 2020 to August 2022. RESULTS: 3DVE showed an accuracy rate of 91% (95%CI 83.6-95.4%) in preoperatively evaluating hCCA resectability, significantly higher than 81% (95%CI 72.8-87.7%) of that of CT (p = 0.03). By multivariable analysis, hepatic artery involvement in 3DVE was identified an independent risk factor for R1 or R2 resection (OR = 3.5, 95%CI 1.4,8.8, P < 0.01). New 3DVE hCCA classification was valuable in predicting patients' R0 resection rate (p < 0.001) and prognosis (p < 0.0001). The main outcomes were internally validated. CONCLUSIONS: 3DVE exhibited a better efficacy in evaluating hCCA resectability, compared with contrast-enhanced CT. Preoperative 3DVE demonstrated hepatic artery involvement was an independent risk factor for the absence of R0 margin. 3DVE classification of hCCA was valuable in clinical practice.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Klatskin Tumor , Humans , Klatskin Tumor/diagnostic imaging , Klatskin Tumor/surgery , Klatskin Tumor/pathology , Cholangiocarcinoma/diagnostic imaging , Cholangiocarcinoma/surgery , Cholangiocarcinoma/pathology , Imaging, Three-Dimensional , Retrospective Studies , Bile Duct Neoplasms/diagnostic imaging , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/diagnostic imaging , Bile Ducts, Intrahepatic/surgery , Bile Ducts, Intrahepatic/pathology
4.
Nat Commun ; 14(1): 861, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792623

ABSTRACT

To explore the mechanism of coadaptation and the potential drivers of pancreatic ductal adenocarcinoma (PDAC) metastasis to the liver, we study key molecules involved in this process and their translational value. Premetastatic niche (PMN) and macrometastatic niche (MMN) formation in a mouse model is observed via CT combined with 3D organ reconstruction bioluminescence imaging, and then we screen slit guidance ligand 2 (SLIT2) and its receptor roundabout guidance receptor 1 (ROBO1) as important factors. After we confirm the expression and distribution of SLIT2 and ROBO1 in samples from PDAC patients and several mouse models, we discover that SLIT2-ROBO1-mediated coadaptation facilitated the implantation and outgrowth of PDAC disseminated tumour cells (DTCs) in the liver. We also demonstrate the dependence receptor (DR) characteristics of ROBO1 in a follow-up mechanistic study. A neutralizing antibody targeting ROBO1 significantly attenuate liver metastasis of PDAC by preventing the coadaptation effect. Thus, we demonstrate that coadaptation is supported by the DR characteristics in the PMN and MMN.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Animals , Mice , Carcinoma, Pancreatic Ductal/genetics , Cell Movement , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction , Pancreatic Neoplasms
5.
Hepatobiliary Pancreat Dis Int ; 22(2): 169-178, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35508435

ABSTRACT

BACKGROUND: ADAMTS (a disintegrin and metalloproteinase with thrombospondin-like motifs) family, a group of extracellular multifunctional enzymes, has been proven to play a pivotal role in the tumor. In pancreatic cancer, the role and mechanism of this family remain unclear. The present study aimed to figure out the hub gene of ADAMTSs and explore the exact roles in the prognosis and biological functions in pancreatic ductal adenocarcinoma (PDAC). METHODS: We used several databases to analyze the ADAMTS family and then screen out the hub genes. The expression of ADAMTS12 in 106 pairs of PDAC tumors and adjacent normal tissues was examined by immunohistochemistry, and its correlations with clinical parameters were further analyzed. The impacts of ADAMTS12 on the migration of PDAC cells were predicted by gene set enrichment analysis and confirmed by transwell assays. The potential impacts of ADAMTS12 on the epithelial-mesenchymal transition (EMT) were identified by database analysis and experimental proof of real-time quantitative polymerase chain reaction (qPCR) and Western blotting. RESULTS: Our study found that ADAMTS12 was a crucial gene in PDAC, and it was highly expressed in tumor tissues when compared to that in the adjacent tissues. ADATMS12 had predictive value of a poor prognosis for PDAC. The elevation of ADAMTS12 was parallel to the progression of PDAC. Inhibition of ADAMTS12 suppressed the migration of PDAC cells and interfered with the process of EMT. CONCLUSIONS: ADAMTS12 is a crucial member of ADAMTSs in PDAC and a predictor of poor prognosis. Additionally, based on its impacts on migration and metastasis in PDAC and the relationship with EMT, ADAMTS12 plays a role of an oncogene in PDAC and may be a promising target for treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Prognosis , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Proliferation/genetics , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism , Pancreatic Neoplasms
7.
Cell Oncol (Dordr) ; 46(1): 17-48, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36367669

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Tumor Microenvironment , Pancreatic Neoplasms/pathology , Immunotherapy/methods , Carcinoma, Pancreatic Ductal/pathology , Immunosuppression Therapy , Pancreatic Neoplasms
8.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36355508

ABSTRACT

Pancreatic adenocarcinoma (PAAD), one of the most malignant tumors, not only has abundant mesenchymal components, but is also characterized by an extremely high metastatic risk. The purpose of this study was to construct a model of stroma- and metastasis-associated prognostic signature, aiming to benefit the existing clinical staging system and predict the prognosis of patients. First, stroma-associated genes were screened from the TCGA database with the ESTIMATE algorithm. Subsequently, transcriptomic data from clinical tissues in the RenJi cohort were screened for metastasis-associated genes. Integrating the two sets of genes, we constructed a risk prognostic signature by Cox and LASSO regression analysis. We then obtained a risk score by a quantitative formula and divided all samples into high- and low-risk groups based on the scores. The results demonstrated that patients with high-risk scores have a worse prognosis than those with low-risk scores, both in the TCGA database and in the RenJi cohort. In addition, tumor mutation burden, chemotherapeutic drug sensitivity and immune infiltration analysis also exhibited significant differences between the two groups. In exploring the potential mechanisms of how stromal components affect tumor metastasis, we simulated different matrix stiffness in vitro to explore its effect on EMT key genes in PAAD cells. We found that cancer cells stimulated by high matrix stiffness may trigger EMT and promote PAAD metastasis.

9.
EBioMedicine ; 80: 104050, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35561453

ABSTRACT

BACKGROUND: Cancer elicits a complex adaptive response in an organism. Limited information is available for the body-wide effects induced by cancer. Here, we evaluated multiorgan changes in mouse models of pancreatic ductal adenocarcinoma (PDAC) and its precursor lesions (pancreatic intraepithelial neoplasia, PanIN) to decipher changes that occur during PDAC development. METHODS: RNA-sequencing was employed in the brain, colon, stomach, kidney, heart, liver, and lung tissues of mice with PanIN and PDAC. A combination of differential expression analysis and functional-category enrichment was applied for an in-depth understanding of the multiorgan transcriptome. Differentially expressed genes were verified by quantitative real-time polymerase chain reaction. Neutrophil and macrophage infiltration in multiple organs was analyzed by immunohistochemical staining. Leukotriene B4 (LTB4) levels in mouse and human serum samples were determined by enzyme-linked immunosorbent assay. FINDINGS: Transcriptional changes within diverse organs during PanIN and PDAC stages were identified. Using Gene Ontology enrichment analysis, increased neutrophil infiltration was discovered as a central and prominent affected feature, which occurred in the liver, lung, and stomach at the PanIN stage. The brain appeared to be well protected from the sequels of PanIN or PDAC. Importantly, serum LTB4 was able to discriminate PDAC from normal controls, chronic pancreatitis, and intraductal papillary mucinous neoplasms with high performance. INTERPRETATION: Our study provides a high-resolution cartographic view of the dynamic multiorgan transcriptomic landscape of mice with PDAC and its precursor lesions. Our findings suggest that LTB4 could serve as a biomarker for the early detection of PDAC. FUNDING: The complete list of funders can be found in the Acknowledgement section.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Early Detection of Cancer , Humans , Leukotriene B4 , Mice , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
10.
Cancer Lett ; 538: 215693, 2022 07 10.
Article in English | MEDLINE | ID: mdl-35472437

ABSTRACT

Owing to the lack of early diagnosis, pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal tumours. Because acinar-to-ductal metaplasia (ADM) is a critical process to pancreatic regeneration and PDAC initiation, we applied GSE65146, a dataset composed of transcripts at different time points in wild-type and KrasG12D mutant mice upon pancreatitis induction, to obtain regeneration- and tumour initiation-related genes. By overlapping with genes differentially expressed in human PDAC, we defined the initiation- and progression-related genes, and the most prognostic gene, SULF2, was selected for further verification. By using multiple PDAC genetically engineered murine models (GEMMs), we further verified that the expression of SULF2 was increased at the ADM and PDAC stages. Functionally, SULF2 was able to promote the dedifferentiation of acinar cells as well as the metastatic ability of PDAC. Additionally, our study revealed that SULF2 could enhance TGFß-SMAD signalling via GDF15. More importantly, serum SULF2 was elevated in patients with PDAC, and in combination with CA19-9, it provided a better method for PDAC diagnosis. Herein, our study screened out key genes for the initiation and progression of PDAC, providing potential indicators for the diagnosis of the disease.


Subject(s)
Carcinoma, Pancreatic Ductal , Growth Differentiation Factor 15 , Pancreatic Neoplasms , Smad Proteins , Sulfatases , Acinar Cells , Animals , Carcinoma, Pancreatic Ductal/pathology , Disease Progression , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Humans , Mice , Pancreatic Neoplasms/pathology , Sulfatases/metabolism
11.
Cell Oncol (Dordr) ; 45(3): 367-379, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35486320

ABSTRACT

BACKGROUND: Metabolic reprogramming has emerged as a core hallmark of cancer, and cancer metabolism has long been equated with aerobic glycolysis. Moreover, hypoxia and the hypovascular tumor microenvironment (TME) are major hallmarks of pancreatic ductal adenocarcinoma (PDAC), in which glycolysis is imperative for tumor cell survival and proliferation. Here, we explored the impact of interleukin 1 receptor-associated kinase 2 (IRAK2) on the biological behavior of PDAC and investigated the underlying mechanism. METHODS: The expression pattern and clinical relevance of IRAK2 was determined in GEO, TCGA and Ren Ji datasets. Loss-of-function and gain-of-function studies were employed to investigate the cellular functions of IRAK2 in vitro and in vivo. Gene set enrichment analysis, Seahorse metabolic analysis, immunohistochemistry and Western blot were applied to reveal the underlying molecular mechanisms. RESULTS: We found that IRAK2 is highly expressed in PDAC patient samples and is related to a poor prognosis. IRAK2 knockdown led to a significant impairment of PDAC cell proliferation via an aberrant Warburg effect. Opposite results were obtained after exogenous IRAK2 overexpression. Mechanistically, we found that IRAK2 is critical for sustaining the activation of transcription factors such as those of the nuclear factor-κB (NF-κB) family, which have increasingly been recognized as crucial players in many steps of cancer initiation and progression. Treatment with maslinic acid (MA), a NF-κB inhibitor, markedly attenuated the aberrant oncological behavior of PDAC cells caused by IRAK2 overexpression. CONCLUSIONS: Our data reveal a role of IRAK2 in PDAC metabolic reprogramming. In addition, we obtained novel insights into how immune-related pathways affect PDAC progression and suggest that targeting IRAK2 may serve as a novel therapeutic approach for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , NF-kappa B/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Pancreatic Neoplasms
12.
Oncogene ; 41(8): 1203-1215, 2022 02.
Article in English | MEDLINE | ID: mdl-35082383

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), cancer with a high mortality rate and the highest rate of KRAS mutation, reportedly internalizes proteins via macropinocytosis to adapt to low amino acid levels in the tumor microenvironment. Here, we aimed to identify a key regulator of macropinocytosis for the survival of tumor cells in a low amino acid environment in PDAC. FYVE, RhoGEF, and PH domain-containing protein 6 (FGD6) were identified as key regulators of macropinocytosis. FGD6 promoted PDAC cell proliferation, macropinocytosis, and tumor growth both in vitro and in vivo. The macropinocytosis level was decreased with FGD6 knockdown in PDAC cell lines. Moreover, FGD6 promoted macropinocytosis by participating in the trans-Golgi network and enhancing the membrane localization of growth factor receptors, especially the TGF-beta receptor. TGF-beta enhanced macropinocytosis in PDAC cells. Additionally, YAP nuclear translocation induced by a low amino acid tumor environment initiated FGD6 expression by coactivation with YY1. Clinical data analysis based on TCGA and GEO datasets showed that FGD6 expression was upregulated in PDAC tissue, and high FGD6 expression was correlated with poor prognosis in patients with PDAC. In tumor tissue from KrasG12D/+/Trp53R172H/-/Pdx1-Cre (KPC) mice, FGD6 expression escalated during PDAC development. Our results uncover a previously unappreciated mechanism of macropinocytosis in PDAC. Strategies to target FGD6 and growth factors membrane localization might be developed for the treatment of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal
13.
Mol Oncol ; 15(11): 3076-3090, 2021 11.
Article in English | MEDLINE | ID: mdl-33932092

ABSTRACT

Hot spot gene mutations in splicing factor 3b subunit 1 (SF3B1) are observed in many types of cancer and create abundant aberrant mRNA splicing, which is profoundly implicated in tumorigenesis. Here, we identified that the SF3B1 K700E (SF3B1K700E ) mutation is strongly associated with tumor growth in pancreatic ductal adenocarcinoma (PDAC). Knockdown of SF3B1 significantly retarded cell proliferation and tumor growth in a cell line (Panc05.04) with the SF3B1K700E mutation. However, SF3B1 knockdown had no notable effect on cell proliferation in two cell lines (BxPC3 and AsPC1) carrying wild-type SF3B1. Ectopic expression of SF3B1K700E but not SF3B1WT in SF3B1-knockout Panc05.04 cells largely restored the inhibitory role induced by SF3B1 knockdown. Introduction of the SF3B1K700E mutation in BxPC3 and AsPC1 cells also boosted cell proliferation. Gene set enrichment analysis demonstrated a close correlation between SF3B1 mutation and aerobic glycolysis. Functional analyses showed that the SF3B1K700E mutation promoted tumor glycolysis, as evidenced by glucose consumption, lactate release, and extracellular acidification rate. Mechanistically, the SF3B1 mutation promoted the aberrant splicing of PPP2R5A and led to the activation of the glycolytic regulator c-Myc via post-translational regulation. Pharmacological activation of PP2A with FTY-720 markedly compromised the growth advantage induced by the SF3B1K700E mutation in vitro and in vivo. Taken together, our data suggest a novel function for SF3B1 mutation in the Warburg effect, and this finding may offer a potential therapeutic strategy against PDAC with the SF3B1K700E mutation.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Glycolysis/genetics , Humans , Mutation/genetics , Pancreatic Neoplasms/pathology , Phosphoproteins/metabolism , RNA Splicing , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
14.
Zhongguo Gu Shang ; 34(4): 360-2, 2021 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-33896137

ABSTRACT

OBJECTIVE: To explore the correlation between the curvature of the cervical spine and the degree of cervical disc bulging in young patients with cervical pain. METHODS: The clinical data of 539 young patients with neck pain from January 2015 to December 2018 were retrospectively analyzed. There were 251 males and 288 females, aged 18 to 40 (32.2±6.3) years old. The cervical curvature and cervical disc bulging were measured by cervical X-ray and MRI. According to cervical curvature, the patients were divided into 175 cases of cervical lordosis group (cervical curvature > 7 mm), 163 cases of cervical erection group (0

Subject(s)
Kyphosis , Lordosis , Adolescent , Adult , Cervical Vertebrae/diagnostic imaging , Female , Humans , Male , Neck Pain/diagnostic imaging , Retrospective Studies , Young Adult
15.
Cancer Lett ; 508: 47-58, 2021 06 28.
Article in English | MEDLINE | ID: mdl-33766751

ABSTRACT

Perineural invasion (PNI) is a common feature of pancreatic ductal adenocarcinoma (PDAC) and is one of the important causes of local recurrence in resected pancreatic cancer, but the molecular mechanism remains largely unexplored. Here, we used immunohistochemistry staining to determine the expression of CD74. Then the in vivo PNI model, in vitro neuroplasticity assay, cell proliferation assay, wound healing and Transwell-based invasion assay were performed to examine the function of CD74 in pancreatic cancer cell lines. ChIP assay and Luciferase reporter assay were used to illustrate the mechanism underlying CD74 induced GDNF expression. We confirmed that the expression level of CD74 was an independent predictor of PNI and poor prognosis for PDAC. Moreover, we found that upregulation of CD74 on PDAC enhanced its migration and invasive capabilities and potentiated the secretion of neurotrophic factor GDNF to promote the neuroplasticity. Mechanistically, CD74 promoted GDNF production via the AKT/EGR-1/GDNF axis in PDAC. Taken together, our findings suggest a supportive role of CD74 in the PNI of PDAC, and deepen our understanding of how cancer cells promote neuroplasticity in the microenvironment of PDAC.


Subject(s)
Antigens, CD/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Neuronal Plasticity , Neurons/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Sialyltransferases/metabolism , Early Growth Response Protein 1/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Humans , Neoplasm Invasiveness , Neurons/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tumor Microenvironment , Up-Regulation
16.
Theranostics ; 11(8): 3898-3915, 2021.
Article in English | MEDLINE | ID: mdl-33664869

ABSTRACT

Prolactin binding to the prolactin receptor exerts pleiotropic biological effects in vertebrates. The prolactin receptor (PRLR) has multiple isoforms due to alternative splicing. The biological roles and related signaling of the long isoform (PRLR-LF) have been fully elucidated. However, little is known about the short isoform (PRLR-SF), particularly in cancer development and metabolic reprogramming, a core hallmark of cancer. Here, we reveal the role and underlying mechanism of PRLR-SF in pancreatic ductal adenocarcinoma (PDAC). Methods: A human PDAC tissue array was used to investigate the clinical relevance of PRLR in PDAC. The in vivo implications of PRLR-SF in PDAC were examined in a subcutaneous xenograft model and an orthotopic xenograft model. Immunohistochemistry was performed on tumor tissue obtained from genetically engineered KPC (KrasG12D/+; Trp53R172H/+; Pdx1-Cre) mice with spontaneous tumors. 13C-labeled metabolite measures, LC-MS, EdU incorporation assays and seahorse analyses were used to identify the effects of PRLR-SF on the pentose phosphate pathway and glycolysis. We identified the molecular mechanisms by immunofluorescence, coimmunoprecipitation, proximity ligation assays, chromatin immunoprecipitation and promoter luciferase activity. Public databases (TCGA, GEO and GTEx) were used to analyze the expression and survival correlations of the related genes. Results: We demonstrated that PRLR-SF is predominantly expressed in spontaneously forming pancreatic tumors of genetically engineered KPC mice and human PDAC cell lines. PRLR-SF inhibits the proliferation of PDAC cells (AsPC-1 and BxPC-3) in vitro and tumor growth in vivo. We showed that PRLR-SF reduces the expression of genes in the pentose phosphate pathway (PPP) and nucleotide biosynthesis by activating Hippo signaling. TEAD1, a downstream transcription factor of Hippo signaling, directly regulates the expression of G6PD and TKT, which are PPP rate-limiting enzymes. Moreover, NEK9 directly interacts with PRLR-SF and is the intermediator between PRLR and the Hippo pathway. The PRLR expression level is negatively correlated with overall survival and TNM stage in PDAC patients. Additionally, pregnancy and lactation increase the ratio of PRLR-SF:PRLR-LF in the pancreas of wild-type mice and subcutaneous PDAC xenograft tumors. Conclusion: Our characterization of the relationship between PRLR-SF signaling, the NEK9-Hippo pathway, PPP and nucleotide synthesis explains a mechanism for the correlation between PRLR-SF and metabolic reprogramming in PDAC progression. Strategies to alter this pathway might be developed for the treatment or prevention of pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , NIMA-Related Kinases/metabolism , Pancreatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Prolactin/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/metabolism , Down-Regulation , Glucosephosphate Dehydrogenase/genetics , Heterografts , Hippo Signaling Pathway , Humans , Mice , Mice, Mutant Strains , Mice, Transgenic , Nuclear Proteins/metabolism , Nucleotides/biosynthesis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pentose Phosphate Pathway , Precision Medicine , Prognosis , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Prolactin/chemistry , Receptors, Prolactin/genetics , Signal Transduction , TEA Domain Transcription Factors , Transcription Factors/metabolism , Transketolase/genetics
17.
Nat Commun ; 12(1): 174, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420030

ABSTRACT

The immunosuppressive microenvironment that is shaped by hepatic metastatic pancreatic ductal adenocarcinoma (PDAC) is essential for tumor cell evasion of immune destruction. Neutrophils are important components of the metastatic tumor microenvironment and exhibit heterogeneity. However, the specific phenotypes, functions and regulatory mechanisms of neutrophils in PDAC liver metastases remain unknown. Here, we show that a subset of P2RX1-negative neutrophils accumulate in clinical and murine PDAC liver metastases. RNA sequencing of murine PDAC liver metastasis-infiltrated neutrophils show that P2RX1-deficient neutrophils express increased levels of immunosuppressive molecules, including PD-L1, and have enhanced mitochondrial metabolism. Mechanistically, the transcription factor Nrf2 is upregulated in P2RX1-deficient neutrophils and associated with PD-L1 expression and metabolic reprogramming. An anti-PD-1 neutralizing antibody is sufficient to compromise the immunosuppressive effects of P2RX1-deficient neutrophils on OVA-activated OT1 CD8+ T cells. Therefore, our study uncovers a mechanism by which metastatic PDAC tumors evade antitumor immunity by accumulating a subset of immunosuppressive P2RX1-negative neutrophils.


Subject(s)
Immunosuppressive Agents/pharmacology , Liver Neoplasms/immunology , Neutrophils/metabolism , Pancreatic Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Liver Neoplasms/pathology , Male , Mice , Mice, Knockout , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Pancreas/immunology , Pancreas/pathology , Pancreatic Neoplasms/pathology , Receptors, Purinergic P2X/genetics , Receptors, Purinergic P2X/immunology , Receptors, Purinergic P2X/metabolism
18.
Int J Biol Sci ; 17(1): 107-118, 2021.
Article in English | MEDLINE | ID: mdl-33390837

ABSTRACT

Aerobic glycolysis, also known as the Warburg effect, is emerged as a hallmark of most cancer cells. Increased aerobic glycolysis is closely associated with tumor aggressiveness and predicts a poor prognosis. Pancreatic ductal adenocarcinoma (PDAC) is characterized by prominent genomic aberrations and increased glycolytic phenotype. However, the detailed molecular events implicated in aerobic glycolysis of PDAC are not well understood. In this study, we performed a comprehensive molecular characterization using multidimensional ''omic'' data from The Cancer Genome Atlas (TCGA). Detailed analysis of 89 informative PDAC tumors identified substantial copy number variations (MYC, GATA6, FGFR1, IDO1, and SMAD4) and mutations (KRAS, SMAD4, and RNF43) related to aerobic glycolysis. Moreover, integrated analysis of transcriptional profiles revealed many differentially expressed long non-coding RNAs involved in PDAC aerobic glycolysis. Loss-of-function studies showed that LINC01559 and UNC5B-AS1 knockdown significantly inhibited the glycolytic capacity of PDAC cells as revealed by reduced glucose uptake, lactate production, and extracellular acidification rate. Moreover, genetic silencing of LINC01559 and UNC5B-AS1 suppressed tumor growth and resulted in alterations in several signaling pathways, such as TNF signaling pathway, IL-17 signaling pathway, and transcriptional misregulation in cancer. Notably, high expression of LINC01559 and UNC5B-AS1 predicted poor patient prognosis and correlated with the maximum standard uptakevalue (SUVmax) in PDAC patients who received preoperative 18F-FDG PET/CT. Taken together, our results decipher the glycolysis-associated copy number variations, mutations, and lncRNA landscapes in PDAC. These findings improve our knowledge of the molecular mechanism of PDAC aerobic glycolysis and may have practical implications for precision cancer therapy.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , RNA, Long Noncoding/metabolism , Warburg Effect, Oncologic , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/therapy , DNA Copy Number Variations , Genome, Human , Humans , Molecular Targeted Therapy , Mutation , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/therapy
19.
Cancer Res ; 80(10): 1991-2003, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32098780

ABSTRACT

Perineural invasion is a common feature of pancreatic ductal adenocarcinoma (PDAC). Here, we investigated the effect of perineural invasion on the microenvironment and how this affects PDAC progression. Transcriptome expression profiles of PDAC tissues with different perineural invasion status were compared, and the intratumoral T-cell density and levels of neurotransmitters in these tissues were assessed. Perineural invasion was associated with impaired immune responses characterized by decreased CD8+ T and Th1 cells, and increased Th2 cells. Acetylcholine levels were elevated in severe perineural invasion. Acetylcholine impaired the ability of PDAC cells to recruit CD8+ T cells via HDAC1-mediated suppression of CCL5. Moreover, acetylcholine directly inhibited IFNγ production by CD8+ T cells in a dose-dependent manner and favored Th2 over Th1 differentiation. Furthermore, hyperactivation of cholinergic signaling enhanced tumor growth by suppressing the intratumoral T-cell response in an orthotopic PDAC model. Conversely, blocking perineural invasion with bilateral subdiaphragmatic vagotomy in tumor-bearing mice was associated with an increase in CD8+ T cells, an elevated Th1/Th2 ratio, and improved survival. In conclusion, perineural invasion-triggered cholinergic signaling favors tumor growth by promoting an immune-suppressive microenvironment characterized by impaired CD8+ T-cell infiltration and a reduced Th1/Th2 ratio. SIGNIFICANCE: These findings provide a promising therapeutic strategy to modulate the immunosuppressive microenvironment of pancreatic ductal adenocarcinoma with severe perineural invasion.


Subject(s)
Acetylcholine/metabolism , Carcinoma, Pancreatic Ductal/pathology , Neoplasm Invasiveness/immunology , Pancreatic Neoplasms/pathology , Tumor Microenvironment/immunology , Animals , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Neoplasm Invasiveness/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Signal Transduction/physiology
20.
FASEB J ; 34(3): 3943-3955, 2020 03.
Article in English | MEDLINE | ID: mdl-31944405

ABSTRACT

Mangrove-derived actinobacteria strains are well-known for producing novel secondary metabolites. The polycyclic tetramate macrolactam (PTM), ikarugamycin (IKA) isolated from Streptomyces xiamenensis 318, exhibits antiproliferative activities against pancreatic ductal adenocarcinoma (PDAC) in vitro. However, the protein target for bioactive IKA is unclear. In this study, whole transcriptome-based profiling revealed that the glycolysis pathway is significantly affected by IKA. Metabolomic studies demonstrated that IKA treatment induces a significant drop in glucose-6-phosphate and a slight increase in intracellular glucose level. Analysis of glucose consumption, lactate production, and the extracellular acidification rate confirmed the inhibitory role of IKA on the glycolytic flux in PDAC cells. Surface plasmon resonance (SPR) experiments and docking studies identified the key enzyme of glycolysis, hexokinase 2 (HK2), as a molecular target of IKA. Moreover, IKA reduced tumor size without overt cytotoxicity in mice with PDAC xenografts and increased chemotherapy response to gemcitabine in PDAC cells in vitro. Taken together, IKA can block glycolysis in pancreatic cancer by targeting HK2, which may be a potential drug candidate for PDAC treatment.


Subject(s)
Hexokinase/metabolism , Lactams/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Glucose/metabolism , Glycolysis/drug effects , Humans , Immunohistochemistry , Lactic Acid/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Real-Time Polymerase Chain Reaction , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...