Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 4(18)2019 09 19.
Article in English | MEDLINE | ID: mdl-31534053

ABSTRACT

The cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles. Advanced morphometric analyses in murine and human tissues identified podocyte hypertrophy as a compensatory mechanism aiming to regulate glomerular functional integrity in response to somatic growth, podocyte depletion, and even glomerulosclerosis - all of this in the absence of detectable podocyte regeneration. In mice, pharmacological inhibition of mTOR signaling during acute podocyte loss impaired hypertrophy of remaining podocytes, resulting in unexpected albuminuria, PEC activation, and glomerulosclerosis. Exacerbated and persistent podocyte hypertrophy enabled a vicious cycle of podocyte loss and PEC activation, suggesting a limit to its beneficial effects. In summary, our data highlight a critical protective role of mTOR-mediated podocyte hypertrophy following podocyte loss in order to preserve glomerular integrity, preventing PEC activation and glomerulosclerosis.


Subject(s)
Albuminuria/chemically induced , Diabetic Nephropathies/pathology , Everolimus/adverse effects , Glomerulosclerosis, Focal Segmental/pathology , TOR Serine-Threonine Kinases/metabolism , Aged , Aged, 80 and over , Animals , Biopsy , Cells, Cultured , Child, Preschool , Datasets as Topic , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/drug therapy , Epithelial Cells/pathology , Everolimus/administration & dosage , Female , Gene Expression Profiling , Humans , Hypertrophy/drug therapy , Hypertrophy/pathology , Infant , Male , Mice , Mice, Knockout , Middle Aged , Podocytes , Primary Cell Culture , Regeneration , Signal Transduction/drug effects , Signal Transduction/genetics , Streptozocin/toxicity , TOR Serine-Threonine Kinases/analysis , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Up-Regulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...