Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2401724, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575151

ABSTRACT

Simultaneously achieving a high photoluminescence quantum yield (PLQY), ultrashort exciton lifetime, and suppressed concentration quenching in thermally activated delayed fluorescence (TADF) materials is desirable yet challenging. Here, a novel acceptor-donor-acceptor type TADF emitter, namely, 2BO-sQA, wherein two oxygen-bridged triarylboron (BO) acceptors are arranged with cofacial alignment and positioned nearly orthogonal to the rigid dispirofluorene-quinolinoacridine (sQA) donor is reported. This molecular design enables the compound to achieve highly efficient (PLQYs up to 99%) and short-lived (nanosecond-scale) blue TADF with effectively suppressed concentration quenching in films. Consequently, the doped organic light-emitting diodes (OLEDs) base on 2BO-sQA achieve exceptional electroluminescence performance across a broad range of doping concentrations, maintaining maximum external quantum efficiencies (EQEs) at over 30% for doping concentrations ranging from 10 to 70 wt%. Remarkably, the nondoped blue OLED achieves a record-high maximum EQE of 26.6% with a small efficiency roll-off of 14.0% at 1000 candelas per square meter. By using 2BO-sQA as the sensitizer for the multiresonance TADF emitter ν-DABNA, TADF-sensitized fluorescence OLEDs achieve high-efficiency deep-blue emission. These results demonstrate the feasibility of this molecular design in developing TADF emitters with high efficiency, ultrashort exciton lifetime, and minimal concentration quenching.

3.
J Mater Sci Mater Med ; 15(2): 137-43, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15330047

ABSTRACT

A novel copolymer has been synthesized by the radical polymerization of poly (ethylene oxide) methacrylate, stearyl methacrylate, hydroxypropyl methacrylate and trimethoxysilylpropyl methacrylate. The polymer was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy and gel permeation chromatography. The crosslinkable coating was prepared by dip-coating 5mg/ml solution in tetrahydrofuran onto glass substrate. A stable crosslinked coating was obtained after curing the coating at 70 degrees C for 9 h. Contact angle results indicated the possible reorganization of the surface amphiphilic molecule which interpreted the excellent biocompatibility revealed by the results of the platelet adhesion and plasma recalcification time. Rhodamine S and Cibacron Blue were used as model drugs to prepare drug-containing coating at the same conditions. Drug-releasing curves indicated that the mechanism of the release is approximately Fickian release.


Subject(s)
Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Platelet Adhesiveness/physiology , Blood Coagulation/drug effects , Cross-Linking Reagents , Humans , Magnetic Resonance Spectroscopy , Platelet Adhesiveness/drug effects , Spectroscopy, Fourier Transform Infrared/methods , Tablets, Enteric-Coated/chemistry , Tablets, Enteric-Coated/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...