Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 44(7): 1464-1474, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36807412

ABSTRACT

Proteasomes are overexpressed in multiple myeloma (MM) and proteasomal inhibitors (PIs) have been widely used for the treatment of MM. PIs are reported to induce MM cell apoptosis but impair necroptosis. In the present study, we found that PIs MG132 and bortezomib induce MM cell pyroptosis, a novel type of cell death, in a GSDME-dependent manner. Lack of GSDME totally blocks PI-induced pyroptosis. Interestingly, we found that Caspase-3/6/7/9 are all involved in pyroptosis triggered by PIs because the specific inhibitor of each caspase ablates GSDME activation. PIs markedly reduce mitochondrial membrane potential. Moreover, PIs disrupt the interaction of Bcl-2 and BAX, induce cytochrome c release from mitochondria to cytosol and activate GSDME. Furthermore, we found that overexpression of an N-terminal portion of GSDME suffices to release cytochrome c from mitochondria and to activate Caspase-3/9, suggesting N-GSDME might penetrate the mitochondrial membrane. Consistent with Bcl-2 inhibition, BAX can induce MM cell pyroptosis in a GSDME-dependent manner. In accordance with these findings, inhibition of Bcl-2 synergizes with PIs to induce MM cell pyroptosis. Therefore, the present study indicates that PIs trigger MM cell pyroptosis via the mitochondrial BAX/GSDME pathway and provides a rationale for combined treatment of MM with Bcl-2 and proteasome inhibitors to increase therapeutic efficiency via induction of pyroptosis.


Subject(s)
Multiple Myeloma , Pyroptosis , Humans , Pyroptosis/physiology , Proteasome Inhibitors/pharmacology , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Multiple Myeloma/drug therapy , Cytochromes c/metabolism
2.
Acta Pharmacol Sin ; 43(4): 1033-1045, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34188177

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal tumours worldwide. However, the effects of first-line sorafenib treatment in advanced HCC fail to prolong patients' survival due to the highly heterogeneous characteristics of HCC etiology. Cyclin-dependent kinase 9 (CDK9) is an important target in the continuous development of cancer therapy. Here, we demonstrate that CDK9 is closely associated with the progression of HCC and can serve as an HCC therapeutic target by modulating the recovery of wild-type p53 (wt-p53) function. We prove that mouse double minute 2 homologue (MDM2) and Sirtuin 1 (SIRT1) are phosphorylated by CDK9 at Ser166 and Ser47, respectively. Inhibition of CDK9 not only reduces the MDM2-mediated ubiquitination and degradation of wt-p53 but also increases wt-p53 stability by suppressing deacetylase activity of SIRT1. Thus, inhibition of CDK9 promotes the wt-p53 stabilization and prevents HCC progression. However, excessive inhibition by high concentrations of specific CDK9 inhibitors counteracts the promotion of p53 stability and reduces their anti-HCC activity because of extreme general transcription repression. The effects of a novel CDK9 inhibitor named oroxylin A (OA) from Scutellaria baicalensis are explored, with the results indicating that OA shows moderate and controlled inhibition of CDK9 activity and expression, and stabilizes wt-p53 by inhibiting CDK9-regulated MDM2 and SIRT1 signaling. These outcomes indicate the high therapeutic potential of OA against HCC and its low toxicity in normal tissue. This study demonstrates a novel mechanism for the regulation of wt-p53 by CDK9 and indicates that OA is a potential candidate for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Apoptosis , Carcinoma, Hepatocellular/pathology , Cyclin-Dependent Kinase 9/metabolism , Flavonoids , Humans , Liver Neoplasms/pathology , Mice , Proto-Oncogene Proteins c-mdm2/metabolism , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...