Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Langmuir ; 40(16): 8665-8677, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598258

ABSTRACT

In this study, a simple, green, and low-cost room temperature synthesis of broccoli-like silver nanoflowers (AgNF) with a particle size of about 300-500 nm was developed using plant-derived caffeic acid as a reducing agent and polyvinylpyrrolidone as a dispersant under ultrasound assistance. The flower clusters covered by small nanocrystals of 20-50 nm significantly enhance the electromagnetic field signals. AgNF was deposited on the surface of silicon wafers as a surface-enhanced Raman spectroscopy sensor for the detection of probe molecules such as rhodamine 6G (R6G) and malachite green with high sensitivity, homogeneity, and reproducibility. AgNF was deposited on cotton fabrics in the form of composites to catalyze the degradation of dye pollutants such as R6G, MG, and methyl orange in the presence of sodium borohydride. 0.1 g of AgNF/cotton fabric could assist 15 mmol/L NaBH4 to achieve over 90% degradation of various dyes as well as a high concentration of dyes in 12 min with good reusability and recyclability. The AgNF synthesized in this work can not only monitor the type and amounts of pollutants (dyes) in wastewater but also catalyze the rapid degradation of dyes, which is expected to be valuable for industrial applications.

2.
J Phys Chem Lett ; 15(13): 3554-3558, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38526310

ABSTRACT

Different from the common perspective of average structure, we propose that the locally elongated metal-oxygen bonds induced by La3+-to-Y3+ substitution to a Lewis acid α-YB5O9 generate medium-strength basic sites. Experimentally, NH3- and CO2-TPD experiments prove that the La3+ doping of α-Y1-xLaxB5O9 (0 ≤ x ≤ 0.24) results in the emergence of new medium-strength basic sites and the increasing La3+ concentration modifies the number, not the strength, of the acidic and basic sites. The catalytic IPA conversion exhibits a reversal of the product selectivity, i.e., from 93% of propylene for α-YB5O9 to ∼90% of acetone for α-Y0.76La0.24B5O9, which means the La3+ doping gradually turns the solid from a Lewis acid to a Lewis base. Besides, α-Y0.76RE0.24B5O9 (RE = Ce, Eu, Gd, Tm) compounds were prepared to consolidate the above conjecture, where the acetone selectivity exhibits a linear dependence on the ionic radius (or electronegativity). This work suggests that the substitution-induced local structure change deserves more attention.

3.
Int J Biol Macromol ; 266(Pt 1): 131140, 2024 May.
Article in English | MEDLINE | ID: mdl-38537864

ABSTRACT

Conventional textile dyeing relies on the use of dyes and pigments, which can cause severe environmental contamination and waste a large amount of water. Structural coloring is one of the effective ways to achieve environmentally friendly coloring of textiles. In this work, three plant polyphenols with the same o-benzenetriol structure (tannic acid (TA), gallic acid (GA), and tea polyphenol (TP)) were selected as raw materials. Three plant polyphenols can quickly form nanofilms at the gas-liquid interface through a Schiff base reaction with polyethyleneimine (PEI) under mildly alkaline conditions, which were deposited to the surface of silk fabric, allowing precise control over the thickness of film by adjusting the time, resulting in various structurally colored silk fabric. This method for creating structural colors is not substrate-specific and enables the quick production of structural colors on various textile substrates. Furthermore, the structural color silk fabric based on plant polyphenol has antibacterial performance. This textile coloring method is simple, cost-effective and environmentally friendly, providing a new approach to eco-friendly textile dyeing.


Subject(s)
Color , Polyphenols , Silk , Textiles , Polyphenols/chemistry , Silk/chemistry , Coloring Agents/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
4.
Phytopathology ; 114(1): 73-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37535821

ABSTRACT

Downy mildew caused by Sclerospora graminicola is a systemic infectious disease affecting foxtail millet production in Africa and Asia. S. graminicola-infected leaves could be decomposed to a state where only the veins remain, resulting in a filamentous leaf tissue symptom. The aim of the present study was to investigate how S. graminicola influences the formation of the filamentous leaf tissue symptoms in hosts at the morphological and molecular levels. We discovered that vegetative hyphae expanded rapidly, with high biomass accumulated at the early stages of S. graminicola infection. In addition, S. graminicola could affect spikelet morphological development at the panicle branch differentiation stage to the pistil and stamen differentiation stage by interfering with hormones and nutrient metabolism in the host, resulting in hedgehog-like panicle symptoms. S. graminicola could acquire high amounts of nutrients from host tissues through secretion of ß-glucosidase, endoglucanase, and pectic enzyme, and destroyed host mesophyll cells by mechanical pressure caused by rapid expansion of hyphae. At the later stages, S. graminicola could rapidly complete sexual reproduction through tryptophan, fatty acid, starch, and sucrose metabolism and subsequently produce numerous oospores. Oospore proliferation and development further damage host leaves via mechanical pressure, resulting in a large number of degraded and extinct mesophyll cells and, subsequently, malformed leaves with only veins left, that is, "filamentous leaf tissue." Our study revealed the S. graminicola expansion characteristics from its asexual to sexual development stages, and the potential mechanisms via which the destructive effects of S. graminicola on hosts occur at different growth stages.


Subject(s)
Oomycetes , Setaria Plant , Hedgehog Proteins/metabolism , Plant Diseases , Plant Leaves
5.
Biol Psychiatry ; 95(5): 403-413, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37579934

ABSTRACT

BACKGROUND: The high heterogeneity of depression prevents us from obtaining reproducible and definite anatomical maps of brain structural changes associated with the disorder, which limits the individualized diagnosis and treatment of patients. In this study, we investigated the clinical issues related to depression according to individual deviations from normative ranges of gray matter volume. METHODS: We enrolled 1092 participants, including 187 patients with depression and 905 healthy control participants. Structural magnetic resonance imaging data of healthy control participants from the Human Connectome Project (n = 510) and REST-meta-MDD Project (n = 229) were used to establish a normative model across the life span in adults 18 to 65 years old for each brain region. Deviations from the normative range for 187 patients and 166 healthy control participants recruited from two local hospitals were captured as normative probability maps, which were used to identify the disease risk and treatment-related latent factors. RESULTS: In contrast to case-control results, our normative modeling approach revealed highly individualized patterns of anatomic abnormalities in depressed patients (less than 11% extreme deviation overlapping for any regions). Based on our classification framework, models trained with individual normative probability maps (area under the receiver operating characteristic curve range, 0.7146-0.7836) showed better performance than models trained with original gray matter volume values (area under the receiver operating characteristic curve range, 0.6800-0.7036), which was verified in an independent external test set. Furthermore, different latent brain structural factors in relation to antidepressant treatment were revealed by a Bayesian model based on normative probability maps, suggesting distinct treatment response and inclination. CONCLUSIONS: Capturing personalized deviations from a normative range could help in understanding the heterogeneous neurobiology of depression and thus guide clinical diagnosis and treatment of depression.


Subject(s)
Brain , Depression , Humans , Adult , Adolescent , Young Adult , Middle Aged , Aged , Bayes Theorem , Depression/diagnostic imaging , Depression/drug therapy , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Cerebral Cortex/pathology , Magnetic Resonance Imaging/methods
6.
Article in English | MEDLINE | ID: mdl-38030032

ABSTRACT

OBJECTIVE: The suicide risk in bipolar disorder (BD) is the highest among psychiatric disorders, and the neurobiological mechanism of suicide in BD remains unclear. The study aimed to investigate the underlying relevance between the implicated abnormalities of dynamic functional connectivity (FC) and suicide attempt (SA) in BD. METHODS: We used the sliding window method to analyze the dynamic FC patterns from resting-state functional MRI data in 81 healthy controls (HC) and 114 BD patients (50 with SA and 64 with none SA). Then, the temporal properties of dynamic FC and the relationship between altered measures and clinical variables were explored. RESULTS: We found that one of the five captured brain functional states was more associated with SA. The SA patients showed significantly increased fractional window and dwell time in the suicide-related state, along with increased number of state transitions compared with none SA (NSA). In addition, the connections within subcortical network-subcortical network (SubC-SubC), default mode network-subcortical network (DMN-SubC), and attention network-subcortical network (AN-SubC) were significantly changed in SA patients relative to NSA and HC in the suicide-related state. Crucially, the above-altered measures were significantly correlated with suicide risk. CONCLUSIONS: Our findings suggested that the impaired dynamic FC within SubC-SubC, DMN-SubC, and AN-SubC were the important underlying mechanism in understanding SA for BD patients. It highlights the temporal properties of whole-brain dynamic FC could serve as the valuable biomarker for suicide risk assessment in BD.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnostic imaging , Suicide, Attempted , Brain Mapping/methods , Neural Pathways/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
7.
Brain Res ; 1822: 148661, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37918703

ABSTRACT

BACKGROUND: Antidepressant treatment effects are strongly heritable and have substantial effects on brain function and structure, but the underlying mechanisms are still poorly understood. In this research, we aimed to evaluate the factors of single nucleotide polymorphisms (SNPs) and hierarchical brain structural and functional networks that were associated with antidepressant treatment. Moreover, we further explored the correlations and mediation pattern among "brain structure-brain function-gene" in major depressive disorder (MDD). METHODS: We analysed 405 SNPs and rich club/feeder/local connections of hierarchical structural and functional networks with three-way parallel independent component analysis in 179 MDD patients. The group-discriminative independent components of the three modalities between responders and non-responders of antidepressant treatment were identified. Pearson correlations and mediation analysis were further utilized to investigate the associations among SNPs and connections of the structural and functional networks. RESULTS: Notably, correlations with antidepressant treatment outcomes were found in structural, functional and SNP modalities simultaneously. The features of group-discriminative independent components included the shared feeder connections of hub regions with the inferior frontal orbital gyrus and amygdala in structural and functional modalities and genes enriched in circadian rhythmic processes and dopaminergic synapse pathways. The structural feeder network displayed close correlations with SNPs and the functional feeder network. Furthermore, the structural feeder network could mediate the association between SNPs and the functional feeder network, implying that genetic variants might influence brain function by affecting brain structure in MDD. CONCLUSIONS: These findings provide potential biomarkers for antidepressant therapy and provide a better grasp of the associations among SNPs and hierarchical structural and functional networks in MDD.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Diffusion Tensor Imaging , Brain , Prefrontal Cortex , Antidepressive Agents/therapeutic use , Magnetic Resonance Imaging
8.
Cell J ; 25(11): 801-808, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38071412

ABSTRACT

OBJECTIVE: This study was to investigate whether annexin A7 (AnnexinA7, ANXA7) and its co-related protein tumor cell death domain silencer [suppressor of death domains (SODD)] regulates the migratory phenotype of liver cancer cells. MATERIALS AND METHODS: In this experimental study, expression of ANXA7 in Hca-P cells, PANXA7 downregulated cells and PANXA7 unrelated sequence cells was detected by real-time quantitative polymerase chain reaction (PCR) at mRNA level and western blotting at protein level. Transwell migration and invasion assays were performed to determine the migratory phenotype. RESULTS: After inhibition of ANXA7 expression, expression of SODD protein was also significantly decreased (P<0.05). Transwell cell transfer experiments showed that number of tumor cells that penetrated into the cell membrane was significantly reduced after ANXA7 silencing (P<0.05). Transwell cell invasion assay showed that number of tumor cells penetrating into Matrigel was significantly reduced after ANXA7 down-regulation (P<0.05). The CCK8 assay was measured at 0, 24 and 48 hours, and proliferation rate of PANXA7 lower weir cells was slower than that of Hca-P cells and PANXA7 non-related sequence cells (P<0.05). CONCLUSION: SODD expression was decreased with the down-regulation of ANXA7. Down-regulating ANXA7 in Hca-P cells decreased proliferation, migration and invasion of tumor cells.

9.
Cogn Neurodyn ; 17(6): 1609-1619, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37974586

ABSTRACT

The diagnosis of bipolar disorders (BD) mainly depends on the clinical history and behavior observation, while only using clinical tools often limits the diagnosis accuracy. The study aimed to create a novel BD diagnosis framework using multilayer modularity in the dynamic minimum spanning tree (MST). We collected 45 un-medicated BD patients and 47 healthy controls (HC). The sliding window approach was utilized to construct dynamic MST via resting-state functional magnetic resonance imaging (fMRI) data. Firstly, we used three null models to explore the effectiveness of multilayer modularity in dynamic MST. Furthermore, the module allegiance exacted from dynamic MST was applied to train a classifier to discriminate BD patients. Finally, we explored the influence of the FC estimator and MST scale on the performance of the model. The findings indicated that multilayer modularity in the dynamic MST was not a random process in the human brain. And the model achieved an accuracy of 83.70% for identifying BD patients. In addition, we found the default mode network, subcortical network (SubC), and attention network played a key role in the classification. These findings suggested that the multilayer modularity in dynamic MST could highlight the difference between HC and BD patients, which opened up a new diagnostic tool for BD patients. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09907-x.

10.
Dalton Trans ; 52(22): 7538-7543, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37183950

ABSTRACT

Whilst metal borates are well known as optical materials, their potential in solid catalysis has been less investigated. The calcite structured InBO3 was selected as the target borate and was prepared using a solvothermal method. High-resolution transmission electron microscopy and powder X-ray diffraction prove that the material has a nanoparticle morphology with an average size ∼50 nm and high crystallinity. Intrinsic surface oxygen vacancies, which are beneficial to catalysis, were detected using X-ray photoelectron spectroscopy. Lewis acidity and basicity were both observed using NH3-/CO2-temperature-programmed desorption experiments, and the total acid and base amounts were found to be 46.6 and 123.8 µmol g-1, respectively. Catalytic dehydration and dehydrogenation reactions for isopropanol at elevated temperatures were conducted in a fixed bed reactor to evaluate the catalytic performance of InBO3. InBO3 exhibits a high conversion rate (>90.5%) and, most importantly, a high dehydrogenation selectivity (acetone selectivity >92.5%), whilst the optimal acetone yield achieved was 121.3 mmol h-1 g-1cat at 350 °C. This study on InBO3 strongly suggests that metal borates have promising applications in heterogeneous catalysis.

11.
Ultrason Sonochem ; 95: 106391, 2023 May.
Article in English | MEDLINE | ID: mdl-37003210

ABSTRACT

To investigate the energy partitioning up to the fourth oscillation of a millimeter-scale spherical cavitation bubble induced by laser, we used nanosecond laser pulses to generate highly spherical cavitation bubbles and shadowgraphs to measure the radius-time curve. Using the extended Gilmore model and considering the continuous condensation of the vapor in the bubble, the time evolution of the bubble radius, bubble wall velocity, and pressure in the bubble is calculated till the 4th oscillation. Using Kirkwood-Bethe hypothesis, the evolution of velocity and pressure of shock wave at the optical breakdown, the first and second collapses are calculated. The shock wave energy at the breakdown and bubble collapse is directly calculated by numerical method. We found the simulated radius-time curve fits well with experimental data for the first four oscillations. The energy partition at the breakdown is the same as that in previous studies, the ratio of shock wave energy to bubble energy is about 2:1. In the first collapse and the second collapse, the ratio of shock wave energy to bubble energy is 14.54:1 and 2.81:1 respectively. In the third and fourth collapses, the ratio is less, namely than 1.5:1 and 0.42:1 respectively. The formation mechanism of the shock wave at the collapse is analyzed. The breakdown shock wave is mainly driven by the expansion of the supercritical liquid resulting from the thermalization of the energy of the free electrons in the plasma, and the collapse shock wave is mainly driven by the compressed liquid around the bubble.

12.
Psychophysiology ; 60(9): e14300, 2023 09.
Article in English | MEDLINE | ID: mdl-36966450

ABSTRACT

The prospects of gaining reward and avoiding punishment widely influence human behavior. Despite of numerous attempts to investigate the influence of motivational signals on working memory (WM), whether the valence and the magnitude of motivational signals interactively influence WM performance remains unclear. To investigate this, the present study used a free-recall working memory task with EEG recording to compare the effect of incentive valence (reward or punishment), as well as the magnitude of incentives on visual WM. Behavioral results revealed that the presence of incentive signals improved WM precision when compared with no-incentive condition, and compared with punishing cues, rewarding cues led to greater facilitation in WM precision, as well as confidence ratings afterward. Moreover, event related potential (ERP) results suggested that compared with punishment, reward led to an earlier latency of late positive component (LPC), a larger amplitude of contingent negative variation (CNV) during the expectation period, and a larger P300 amplitude during the sample and delay periods. Furthermore, reward advantage over punishment in behavioral and neural results were correlated, such that individuals with larger CNV difference between reward and punishment conditions also report greater distinction in confidence ratings between the two conditions. In sum, our results demonstrate what and how rewarding cues cause more beneficial effects than punishing cues when incentivizing visual WM.


Subject(s)
Motivation , Punishment , Humans , Memory, Short-Term , Reward , Evoked Potentials
13.
Chemistry ; 29(26): e202204040, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36790317

ABSTRACT

The dual-site synergistic effect in heterogeneous catalysis is quite interesting, and also complex because at least two substrate molecules are adsorbed or activated on the catalyst surface, which apparently needs two spatially separated and functionally independent active sites. It would become more difficult when the substrate molecules are large ones. The replacement of Al3+ in Al4 B6 O15 lattice with Co2+ leads to the formation of unsaturated Co2+ (4-fold coordination) along with oxygen vacancies (Ov ). The former one behaves as a medium-strength Lewis acid site, and can adsorb and activate molecules with a nitro group (e. g., ß-nitrostyrene). The latter one can adsorb and activate oxygen species, which further activates the indole derivatives. Next, the spatially separated dual sites on the catalyst surface can synergistically and efficiently catalyze their Friedel-Crafts alkylation reactions under mild conditions. The high durability can be proved by the as-maintained high yields, that is, 98, 93, 96, 92 and 90 % for 5 runs, respectively. The reaction kinetics obey the second-order characteristic. Annealing under hydrogen condition can further generate more surficial Ov , leading to an improvement to the catalytic activity. A simple and probably routine aliovalent doping endows such a complex synergistic catalysis involving two large substrate molecules, providing an inspired perspective of developing dual-site catalysts.

14.
Cancer Med ; 12(5): 5874-5888, 2023 03.
Article in English | MEDLINE | ID: mdl-36305754

ABSTRACT

OBJECTIVE: Cervical cancer, one of the common types of malignant tumors progressed in women, is on the rise in developing countries. Numerous previous studies have demonstrated that hsa-mir-133a-2 miRNA is abnormally expressed in cervical cancer cells. However, its fundamental mechanism in cervical cancer needs to be further clarified. Our study set out to investigate the effect of hsa-mir-133a-2 on the phenotypes of cervical cancer cells as well as any potential molecular processes involved in the proliferation and invasion of cervical cancer cells. METHODS: The Cancer Genome Atlas-cervical squamous cell carcinoma and endocervical adenocarcinoma(TCGA-CESC) was adopted in order to verify the expression of hsa-mir-133a-2 in cervical cancer tissues and to identify its potential targets. The interaction between Laminin subunit beta-3(LAMB3) and hsa-mir-133a-2 was verified by TargetScan database as well as Luciferase reporter assay. The Cell Counting Kit-8 (CCK8) and transwell methods were utilized to assess the influence of hsa-mir-133a-2 on the proliferation and invasion characteristics of cervical cancer cells. We studied the role that hsa-mir-133a-2 plays in cervical cancer progression through Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis as well as Western Blot (WB) experiment. RESULTS: Down-regulation of hsa-mir-133a-2 was detected in cervical cancer tissues. It directly targeted LAMB3 and negatively regulated LAMB3 expression. The overexpression of hsa-mir-133a-2 has a significant inhibiting effect on cervical cancer cell proliferation and invasion. The overexpression of hsa-mir-133a-2 significantly inhibits the proliferation and invasion of cervical cancer cells. Moreover, the LAMB3 was able to up-regulate the phosphorylation levels of AKT and phosphatidylinositol 3-kinase (PI3K) protein in cervical cancer cells. hsa-mir-133a-2 could also modulate the PI3K/AKT signaling pathway by targeting LAMB3. CONCLUSION: hsa-mir-133a-2 inhibits cervical cancer cell proliferation and invasion by indirectly regulating the PI3K/AKT signaling pathway, providing us with a new clinical treatment strategy for cervical cancer.


Subject(s)
Phosphatidylinositol 3-Kinase , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/genetics
15.
Rev Sci Instrum ; 93(9): 094710, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182462

ABSTRACT

This paper describes the development and validation of a rapid internal defect detection method for multilayer composite components. Coplanar array capacitive imaging is based on electrical capacitance tomography, in which all electrodes are arranged in a single plane. The coplanar array capacitive sensor system is based on the capacitive edge effect and reconstructs the dielectric distribution in the sensitive area by measuring the capacitance of the sensor. A 4 × 3 array of coplanar electrode sensors is established and used to image the defects in the inner layers of multilayer composite components. Using a 3D model of the sensor and the sensitivity field, the variation pattern of the sensitivity field is analyzed. By placing different objects into the sensitivity area of the system, changes in the dielectric constant can be observed. Multilayer composite components with void defects are placed in the measurement area for defect detection. The dielectric distribution is visualized by reconstruction algorithms from the capacitance data and sensitivity field data. The results show that the imaging system based on a coplanar array capacitive sensor can reproduce the location of defects and realize the nondestructive testing of complex multilayer composite components.

16.
Brain Sci ; 12(9)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36138948

ABSTRACT

The present study aimed to explore the effect of intermittent theta-burst stimulation (iTBS) on visual working memory for people suffering from methamphetamine use disorder (MUD). Five sessions of iTBS were carried over the left dorsolateral prefrontal cortex (DLPFC) or the vertex as a sham control, with each session in one day. Orientation free-recall tasks were conducted before the iTBS stimulation, after the first and fifth sessions of stimulation. Results showed that when compared with the sham group, a single session of iTBS over the left DLPFC improved participants' working memory performance. Specifically, iTBS over the left DLPFC increased the working memory capacity and such effects enlarged with multiple sessions. The present finding suggested that iTBS over DLPFC could be a promising intervention method to enhance the cognitive function of addicts with MUD.

17.
Front Plant Sci ; 13: 928040, 2022.
Article in English | MEDLINE | ID: mdl-35903230

ABSTRACT

Downy mildew of foxtail millet is an important oomycete disease caused by Sclerospora graminicola, affecting the yield and quality of the crop. Foxtail millet infected with S. graminicola exhibit symptoms of leaf yellowing and leaf cracking. To uncover the pathogenic mechanism of this disease, we explored the effects on chlorophyll synthesis and photosynthesis of foxtail millet leaves infected by S. graminicola. An elite foxtail millet variety, JG21, susceptible to S. graminicola, was used as for this study. S. graminicola inhibited chlorophyll synthesis and caused loose mesophyll cell arrangement. In addition, some cells were severely vacuolated in S. graminicola-infected foxtail millet leaves at the early stages of infection. S. graminicola could invade the mesophyll cells through haustoria which destroyed the chloroplast structure at the middle stages of infection causing significant accumulation of osmiophilic particles (OPs) and disintegrated chloroplast grana lamellae. Furthermore, foxtail millet leaves split longitudinally at the later stages of infection. Chlorophyll and carotenoid contents in infected leaves decreased significantly compared with those in the control. Net photosynthetic rate (Pn) of leaves and stomatal conductance showed a downward trend, and intercellular carbon dioxide concentrations increased significantly following the infection with S. graminicola. A total of 1,618 differentially expressed genes (DEGs) were detected between the control group and the treatment groups using RNA sequencing (RNA-Seq) among S1-S5 stages. DEGs associated with "photosynthesis" and "light reaction" were enriched. Gene expression patterns showed that 91.3% of 23 genes related to chlorophyll synthesis and photosynthesis, were significantly down-regulated than the control during S1-S5 stages. Based on the gene expression dataset, weighed gene co-expression network analysis (WGCNA) with 19 gene co-expression modules related to photosynthesis revealed six hub genes related to chlorophyll synthesis, which were suppressed during infection. The results suggest that infection of S. graminicola led to weak chlorophyll synthesis and rapid chloroplasts disappearance in foxtail millet. The defense responses and resistance of foxtail millet to S. graminicola were inhibited because chloroplast structure and function were destroyed in leaves, and the sexual reproduction in S. graminicola could be completed rapidly.

18.
Cell Mol Biol (Noisy-le-grand) ; 67(6): 167-173, 2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35818199

ABSTRACT

Annexin A7 has been confirmed in our previous research to be an important factor in lymph node metastasis (LNM) of hepatocellular carcinoma (HCC). SODD and ALG-2 are the binding proteins of Annexin A7 and can work in protein complexes. The present study was carried out with the constructed cell lines in mouse model of metastasis for further elaboration of possible mechanisms and identification of associated genes in the LNM of HCC. This experiment used inbred Chinese 615 mice, as well as Hca-F and Hca-P cells. Quantification of the relative messenger RNA (mRNA) expression of SODD and ALG-2 was realized by using qRT-PCR. Quantification of the protein expressions of SODD and ALG-2 was achieved by using western blot. Experimental mice (n=160) (6-8weeks old, 18-22g, SCXK [LIAO] 2008-0002) were randomly classified into four groups equally, which were separately inoculated with Hca-F, Hca-P, FAnxa7-upregulated, and PAnxa7-upregulated cells. Serum levels of SODD and ALG-2 were measured by ELISA. Immunohistochemical analysis of SODD and ALG-2 was further conducted. Tumor LNM-related factors of SODD and ALG-2 showed the same tendency in their expression correspondingly with the up-regulated expression of Annexin A7. Our experiment further explored the roles of SODD and ALG-2 based on Annexin A7 up-regulation vectors construction and the establishment of corresponding controls in vivo. Furthermore, the mouse model of primary tumors was constructed by injecting Hca-F, FAnxa7-upregulated and Hca-P, PAnxa7-upregulated cells into the mouse footpad. Mice were sacrificed at the designated time points for detecting SODD and ALG-2 expression in tumor tissue and serum samples. Collectively, our work indicates SODD in tumors and in serum and ALG-2 in serum are valuable in evaluating LNM in mice with HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Annexin A7/genetics , Annexin A7/metabolism , Biomarkers , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Disease Models, Animal , Liver Neoplasms/pathology , Lymphatic Metastasis , Mice
19.
J Coll Physicians Surg Pak ; 32(5): 586-590, 2022 May.
Article in English | MEDLINE | ID: mdl-35546692

ABSTRACT

OBJECTIVE: To establish and verify a nomogram for individualized prediction of patients with oesophageal and gastric variceal rupture and haemorrhage in cirrhosis. STUDY DESIGN: Descriptive study. PLACE AND DURATION OF STUDY: Department of Digestive Internal Medicine, Funan County People's Hospital, Anhui, China, from June 2017 to June 2020. METHODOLOGY: Univariate and multivariate logistic regression analyses were used to identify the risk factors for oesophageal and gastric variceal bleeding in cirrhosis. An individualized risk prediction model was established, which was validated by the parallel bootstrap method and an external validation set. RESULTS: It was found that emotional stimuli (OR=4.591, 95% CI: 1.419-14.852), improper diet (OR=3.702, 95% CI: 1.606-8.526), overwork (OR=3.529, 95% CI: 1.331-9.366), lower temperature (OR=3.013, 95% CI: 1.242-7.308), and increased abdominal pressure (OR=2.416, 95% CI: 0.900-6.487) were independent risk factors for oesophageal and gastric variceal bleeding in cirrhosis. A risk prediction model was established based on the five risk factors, and the R equation test showed that the C-index of the modelling group and the verification group was 0.815 (95% CI: 0.794-0.836) and 0.812 (95% CI: 0.793-0.831), respectively. CONCLUSION: The results of the correction curve showed little difference, which indicated that the risk prediction model has good accuracy and differentiation. KEY WORDS: Cirrhosis, Oesophagus varices and gastric fundus varices, Bleeding, Risk factors, Risk model, Validation.


Subject(s)
Esophageal and Gastric Varices , Varicose Veins , Esophageal and Gastric Varices/complications , Esophageal and Gastric Varices/etiology , Gastrointestinal Hemorrhage/epidemiology , Gastrointestinal Hemorrhage/etiology , Humans , Liver Cirrhosis/complications
20.
J Magn Reson Imaging ; 56(1): 282-290, 2022 07.
Article in English | MEDLINE | ID: mdl-34870351

ABSTRACT

BACKGROUND: Combining genetic variants with neuroimaging phenotypes may facilitate understanding of the biological mechanisms for the etiology and pharmacology of antidepressant treatment of major depressive disorder (MDD). PURPOSE: To explore the latent pathway of dopamine gene-hierarchical brain network-antidepressant treatment. STUDY TYPE: Retrospective. POPULATION: One hundred and sixty-eight MDD inpatients divided into responders (N = 98) or nonresponders (N = 70) based on the treatment outcome of antidepressant. FIELD STRENGTH/SEQUENCE: Diffusion tensors imaging and resting-state functional magnetic resonance imaging at 3.0T using echo-planar sequence. ASSESSMENT: Four genetic variations of the dopamine receptor D1 (DRD1) were genotyped. Strengths of rich-club, feeder, and local connections were calculated based on the rich-club organizations of structural and functional brain networks at baseline and following 4 weeks of selective serotonin reuptake inhibitor (SSRI) therapy. STATISTICAL TESTS: Logistic and linear regressions were used to analyze the impact of DRD1 multilocus genetic profile score on the treatment response of SSRI, and their associations with strengths of rich-club, feeder, and local connections. Mediation models were developed to explore the mediation role of rich-club organizations on the relationship between DRD1 and SSRI therapy response. A P value <0.05 was considered to be statistically significant. RESULTS: Multiple genetic variations of DRD1 were significantly related to the strengths of feeder connections both in structural and functional networks, and to the treatment response of SSRI. Furthermore, the strength of the structural feeder connection significantly modulated the effect of DRD1 variants on SSRI treatment outcome. DATA CONCLUSION: DRD1 displayed close connections both with SSRI treatment outcome and rich-club organizations of structural and functional data. Moreover, structural feeder connection played a mediating role in the relationship between DRD1 and antidepressant therapy. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 4.


Subject(s)
Antidepressive Agents , Depressive Disorder, Major , Multiparametric Magnetic Resonance Imaging , Receptors, Dopamine D1 , Antidepressive Agents/therapeutic use , Brain/pathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Genetic Variation , Humans , Receptors, Dopamine D1/genetics , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...