Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Nano Lett ; 24(4): 1303-1308, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38232135

ABSTRACT

A nonlinear holographic technique is capable of processing optical information in the newly generated optical frequencies, enabling fascinating functions in laser display, security storage, and image recognition. One popular nonlinear hologram is based on a periodically poled lithium niobate (LN) crystal. However, due to the limitations of traditional fabrication techniques, the pixel size of the LN hologram is typically several micrometers, resulting in a limited field-of-voew (FOV) of several degrees. Here, we experimentally demonstrate an ultra-high-resolution LN hologram by using the laser poling technique. The minimal pixel size reaches 200 nm, and the FOV is extended above 120° in our experiments. The image distortions at large view angles are effectively suppressed through the Fourier transform. The FOV is further improved by combining multiple diffraction orders of SH fields. The ultimate FOV under our configuration is decided by a Fresnel transmission. Our results pave the way for expanding the applications of nonlinear holography to wide-view imaging and display.

2.
Food Res Int ; 176: 113797, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163708

ABSTRACT

Fermented soymilk (FSM) as a new plant-based yoghurt has attracted attention for its nutritional and health benefits. The aim of this research is to explore the effect of consuming FSM before and during inflammatory bowel disease (IBD) on intestinal immune response, and to assess whether fermentation and sucrose can improve the anti-inflammatory activity of soymilk (SM) and FSM, and finally clarify their effect on the gut microbiota and levels of short-chain fatty acids (SCFAs). Consuming FSM in advance can effectively alleviate weight loss and bloody stools in mice with colitis and is associated with a 27% colon length repair rate. It can also prevent spleen and liver enlargement, inhibit immune response and oxidative stress, and increase the expression of the tight junction protein occludin gene (60%). Meanwhile, intaking FSM during IBD reduced weight loss, prevented liver damage, and repaired colon injury. In addition, fermentation enhance the inhibitory effects of FSM on colitis, whereas adding 3% sucrose to FSM had no effect on its intervention in colitis. Analysis of the composition of the gut microbiota in mice showed that the intake of FSM reduced the relative abundance of the pathogenic bacteria Parasutterella, Turicibater, and Bacteroide by 75%, 62%, and 50%, respectively, and increased the relative abundance of the beneficial bacteria Akkermansiaceae, Lachnospiraceae, Alloprevotella, and Dubosella by 28%, 50%, 80%, and 63%, respectively. It further restored the levels of SCFAs in the mouse intestine. The results provide a scientific basis for FSM as a natural anti-inflammatory food that can improve inflammatory intestinal microbiota imbalance and promote gut health.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Animals , Colitis/chemically induced , Colitis/prevention & control , Immunity , Weight Loss , Anti-Inflammatory Agents/adverse effects , Sucrose/pharmacology
3.
Nanomaterials (Basel) ; 13(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38132996

ABSTRACT

The detection and feedback of displacement and velocity significantly impact the control accuracy of the linear feed system. In this study, we propose a flexible and self-powered displacement sensor based on the triboelectric effect, designed for seamless integration into linear feed systems. The displacement sensor comprises two parts, the mover and stator, operating in a sliding mode. This sensor can precisely detect the displacement of the linear feed system with a large detection range. Additionally, the sensor is capable of real-time velocity detection of linear feed systems, with an error rate below 0.5%. It also offers advantages, such as excellent flexibility, compact size, stability, easy fabrication, and seamless integration, with linear feed systems. These results highlight the potential of the self-powered displacement sensor for various applications in linear feed systems.

4.
Microbiol Spectr ; 11(6): e0225323, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37796020

ABSTRACT

IMPORTANCE: The important enteropathogen Salmonella can cause lethal systemic infection via survival and replication in host macrophages. Lactate represents an abundant intracellular metabolite during bacterial infection, which can also induce macrophage M2 polarization. In this study, we found that macrophage-derived lactate promotes the intracellular replication and systemic infection of Salmonella. During Salmonella infection, lactate via the Salmonella type III secretion system effector SteE promotes macrophage M2 polarization, and the induction of macrophage M2 polarization by lactate is responsible for lactate-mediated Salmonella growth promotion. This study highlights the complex interactions between Salmonella and macrophages and provides an additional perspective on host-pathogen crosstalk at the metabolic interface.


Subject(s)
Bacterial Infections , Salmonella Infections , Humans , Lactic Acid/metabolism , Macrophages/microbiology , Salmonella Infections/metabolism , Bacterial Infections/metabolism , Salmonella
5.
J Transl Autoimmun ; 7: 100210, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37711153

ABSTRACT

Immune cell infiltration and glandular dysfunction are the hallmarks of autoimmune diseases such as primary Sjogren's syndrome (pSS), however, the mechanism(s) is unknown. Our data show that metformin-treatment induces Ca2+ signaling that restores saliva secretion and prevents immune cell infiltration in the salivary glands of IL14α-transgenic mice (IL14α), which is a model for pSS. Mechanistically, we show that loss of Ca2+ signaling is a major contributing factor, which is restored by metformin treatment, in IL14α mice. Furthermore, the loss of Ca2+ signaling leads to ER stress in salivary glands. Finally, restoration of metformin-induced Ca2+ signaling inhibited the release of alarmins and prevented the activation of ER stress that was essential for immune cell infiltration. These results suggest that loss of metformin-mediated activation of Ca2+ signaling prevents ER stress, which inhibited the release of alarmins that induces immune cell infiltration leading to salivary gland dysfunction observed in pSS.

6.
Oral Dis ; 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37357360

ABSTRACT

OBJECTIVE: Idiopathic gingival fibromatosis (IGF) is a rare heterogeneous disease that results in the progressive and diffuse hyperplasia of gingival tissues. MicroRNAs are implicated in the development and progression of various tumors. The present study aimed to explore the potential roles and mechanisms of miR-148a-3p in IGF. METHODS: Gingival fibroblasts (GFs) were transfected with miR-148a-3p mimics, miR-148a-3p inhibitors, or siNPTX1, and then, the proliferation and apoptosis of GFs and the expression of related genes were evaluated using Cell Counting Kit-8 assays, 5-ethynyl-2'-deoxyuridine assays, flow cytometry, reverse transcription-quantitative polymerase chain reaction, and western blot analysis, respectively. RESULTS: miR-148a-3p was highly expressed in GFs of IGF (IGF-GFs) as compared with normal GFs (N-GFs). Overexpression of miR-148a-3p promoted the proliferation and inhibited the apoptosis of N-GFs, whereas downregulation of miR-148a-3p had the opposite effect in IGF-GFs. Knockdown of NPTX1 reversed miR-148a-3p-mediated effects in IGF-GFs. Dual-luciferase reporter assay confirmed that NPTX1 is a direct target of miR-148a-3p. CONCLUSION: These findings identify that miR-148a-3p could regulate cell proliferation and apoptosis by targeting NPTX1, providing new insights for the further study of the molecular mechanism and treatment of IGF.

7.
Clin Transl Med ; 13(4): e1228, 2023 04.
Article in English | MEDLINE | ID: mdl-37006181

ABSTRACT

BACKGROUND: Primary Sjogren's syndrome (pSS) is a systemic autoimmune disease that is embodied by the loss of salivary gland function and immune cell infiltration, but the mechanism(s) are still unknown. The aim of this study was to understand the mechanisms and identify key factors that leads to the development and progression of pSS. METHODS: Immunohistochemistry staining, FACS analysis and cytokine levels were used to detect immune cells infiltration and activation in salivary glands. RNA sequencing was performed to identify the molecular mechanisms involved in the development of pSS. The function assays include in vivo saliva collection along with calcium imaging and electrophysiology on isolated salivary gland cells in mice models of pSS. Western blotting, real-time PCR, alarmin release, and immunohistochemistry was performed to identify the channels involved in salivary function in pSS. RESULTS: We provide evidence that loss of Ca2+ signaling precedes a decrease in saliva secretion and/or immune cell infiltration in IL14α, a mouse model for pSS. We also showed that Ca2+ homeostasis was mediated by transient receptor potential canonical-1 (TRPC1) channels and inhibition of TRPC1, resulting in the loss of salivary acinar cells, which promoted alarmin release essential for immune cell infiltration/release of pro-inflammatory cytokines. In addition, both IL14α and samples from human pSS patients showed a decrease in TRPC1 expression and increased acinar cell death. Finally, paquinimod treatment in IL14α restored Ca2+ homeostasis that inhibited alarmin release thereby reverting the pSS phenotype. CONCLUSIONS: These results indicate that loss of Ca2+ signaling is one of the initial factors, which induces loss of salivary gland function along with immune infiltration that exaggerates pSS. Importantly, restoration of Ca2+ signaling upon paquinimod treatment reversed the pSS phenotype thereby inhibiting the progressive development of pSS.


Subject(s)
Sjogren's Syndrome , Humans , Animals , Mice , Sjogren's Syndrome/drug therapy , Sjogren's Syndrome/diagnosis , Alarmins/analysis , Alarmins/metabolism , Salivary Glands/metabolism , Saliva/chemistry , Saliva/metabolism , Phenotype
8.
BMC Infect Dis ; 23(1): 188, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991360

ABSTRACT

BACKGROUND: This study assessed the differences in daily virus reduction and the residual infectivity after the recommended home stay period in Japan in patients infected with influenza and treated with baloxavir (BA), laninamivir (LA), oseltamivir (OS), and zanamivir (ZA). METHODS: We conducted an observational study on children and adults at 13 outpatient clinics in 11 prefectures in Japan during seven influenza seasons from 2013/2014 to 2019/2020. Virus samples were collected twice from influenza rapid test-positive patients at the first and second visit 4-5 days after the start of treatment. The viral RNA shedding was quantified using quantitative RT-PCR. Neuraminidase (NA) and polymerase acidic (PA) variant viruses that reduce susceptibility to NA inhibitors and BA, respectively, were screened using RT-PCR and genetic sequencing. Daily estimated viral reduction was evaluated using univariate and multivariate analyses for the factors such as age, treatment, vaccination status, or the emergence of PA or NA variants. The potential infectivity of the viral RNA shedding at the second visit samples was determined using the Receiver Operator Curve based on the positivity of virus isolation. RESULTS: Among 518 patients, 465 (80.0%) and 116 (20.0%) were infected with influenza A (189 with BA, 58 with LA, 181 with OS, 37 with ZA) and influenza B (39 with BA, 10 with LA, 52 with OS, 15 with ZA). The emergence of 21 PA variants in influenza A was detected after BA treatment, but NA variants were not detected after NAIs treatment. Multiple linear regression analysis showed that the daily viral RNA shedding reduction in patients was slower in the two NAIs (OS and LA) than in BA, influenza B infection, aged 0-5 years, or the emergence of PA variants. The residual viral RNA shedding potentially infectious was detected in approximately 10-30% of the patients aged 6-18 years after five days of onset. CONCLUSIONS: Viral clearance differed by age, type of influenza, choice of treatment, and susceptibility to BA. Additionally, the recommended homestay period in Japan seemed insufficient, but reduced viral spread to some extent since most school-age patients became non-infectious after 5 days of onset.


Subject(s)
Influenza, Human , Child , Adult , Humans , Influenza, Human/drug therapy , Neuraminidase/genetics , Outpatients , Japan , Seasons , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Zanamivir/therapeutic use , Oseltamivir/therapeutic use , Enzyme Inhibitors/therapeutic use , RNA, Viral/genetics
9.
Viruses ; 15(2)2023 02 20.
Article in English | MEDLINE | ID: mdl-36851797

ABSTRACT

An influenza circulation was observed in Myanmar between October and November in 2021. Patients with symptoms of influenza-like illness were screened using rapid diagnostic test (RDT) kits, and 147/414 (35.5%) upper respiratory tract specimens presented positive results. All RDT-positive samples were screened by a commercial multiplex real-time polymerase chain reaction (RT-PCR) assay, and 30 samples positive for influenza A(H3N2) or B underwent further typing/subtyping for cycle threshold (Ct) value determination based on cycling probe RT-PCR. The majority of subtyped samples (n = 13) were influenza A(H3N2), while only three were B/Victoria. Clinical samples with low Ct values obtained by RT-PCR were used for whole-genome sequencing via next-generation sequencing technology. All collected viruses were distinct from the Southern Hemisphere vaccine strains of the corresponding season but matched with vaccines of the following season. Influenza A(H3N2) strains from Myanmar belonged to clade 2a.3 and shared the highest genetic proximity with Bahraini strains. B/Victoria viruses belonged to clade V1A.3a.2 and were genetically similar to Bangladeshi strains. This study highlights the importance of performing influenza virus surveillance with genetic characterization of the influenza virus in Myanmar, to contribute to global influenza surveillance during the COVID-19 pandemic.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Myanmar/epidemiology , Pandemics
10.
Front Physiol ; 13: 969000, 2022.
Article in English | MEDLINE | ID: mdl-36187775

ABSTRACT

Oral cancer patients have a poor prognosis, with approximately 66% of patients surviving 5-years after diagnosis. Treatments for oral cancer are limited and have many adverse side effects; thus, further studies are needed to develop drugs that are more efficacious. To achieve this objective, we developed CIDD-99, which produces cytotoxic effects in multiple oral squamous cell carcinoma (OSCC) cell lines. While we demonstrated that CIDD-99 induces ER stress and apoptosis in OSCC, the mechanism was unclear. Investigation of the Bcl-family of proteins showed that OSCC cells treated with CIDD-99 undergo downregulation of Bcl-XL and Bcl-2 anti-apoptotic proteins and upregulation of Bax (pro-apoptotic). Importantly, OSCC cells treated with CIDD-99 displayed decreased calcium signaling in a dose and time-dependent manner, suggesting that blockage of calcium signaling is the key mechanism that induces cell death in OSCC. Indeed, CIDD-99 anti-proliferative effects were reversed by the addition of exogenous calcium. Moreover, electrophysiological properties further established that calcium entry was via the non-selective TRPC1 channel and prolonged CIDD-99 incubation inhibited STIM1 expression. CIDD-99 inhibition of calcium signaling also led to ER stress and inhibited mitochondrial complexes II and V in vitro. Taken together, these findings suggest that inhibition of TRPC mediates induction of ER stress and mitochondrial dysfunction as a part of the cellular response to CIDD-99 in OSCC.

11.
Stem Cell Res Ther ; 13(1): 306, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35841112

ABSTRACT

BACKGROUND: Current treatments for salivary gland (SG) hypofunction are palliative and do not address the underlying cause or progression of the disease. SG-derived stem cells have the potential to treat SG hypofunction, but their isolation is challenging, especially when the tissue has been damaged by disease or irradiation for head and neck cancer. In the current study, we test the hypothesis that multipotent bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model are capable of trans-differentiating to the SG epithelial cell lineage when induced by a native SG-specific extracellular matrix (SG-ECM) and thus may be a viable substitute for repairing damaged SGs. METHODS: Rat BM-MSCs were treated with homogenates of decellularized rat SG-ECM for one hour in cell suspension and then cultured in tissue culture plates for 7 days in growth media. By day 7, the cultures contained cell aggregates and a cell monolayer. The cell aggregates were hand-selected under a dissecting microscope, transferred to a new tissue culture dish, and cultured for an additional 7 days in epithelial cell differentiation media. Cell aggregates and cells isolated from the monolayer were evaluated for expression of SG progenitor and epithelial cell specific markers, cell morphology and ultrastructure, and ability to form SG-like organoids in vivo. RESULTS: The results showed that this approach was very effective and guided the trans-differentiation of a subpopulation of CD133-positive BM-MSCs to the SG epithelial cell lineage. These cells expressed amylase, tight junction proteins (Cldn 3 and 10), and markers for SG acinar (Aqp5 and Mist 1) and ductal (Krt 14) cells at both the transcript and protein levels, produced intracellular secretory granules which were morphologically identical to those found in submandibular gland, and formed SG-like organoids when implanted in the renal capsule in vivo. CONCLUSIONS: The results of this study suggest the feasibility of using autologous BM-MSCs as an abundant source of stem cells for treating SG hypofunction and restoring the production of saliva in these patients.


Subject(s)
Mesenchymal Stem Cells , Organoids , Animals , Cell Differentiation , Cell Transdifferentiation , Extracellular Matrix/metabolism , Rats , Salivary Glands
12.
Front Cell Dev Biol ; 10: 808303, 2022.
Article in English | MEDLINE | ID: mdl-35127684

ABSTRACT

Treatment of bone defects remains a challenge in the clinic. Artificial bone grafts are the most promising alternative to autologous bone grafting. However, one of the limiting factors of artificial bone grafts is the limited means of regulating stem cell differentiation during bone regeneration. As a weight-bearing organ, bone is in a continuous mechanical environment. External mechanical force, a type of biophysical stimulation, plays an essential role in bone regeneration. It is generally accepted that osteocytes are mechanosensitive cells in bone. However, recent studies have shown that mesenchymal stem cells (MSCs) can also respond to mechanical signals. This article reviews the mechanotransduction mechanisms of MSCs, the regulation of mechanical stimulation on microenvironments surrounding MSCs by modulating the immune response, angiogenesis and osteogenesis, and the application of mechanical stimulation of MSCs in bone regeneration. The review provides a deep and extensive understanding of mechanical stimulation mechanisms, and prospects feasible designs of biomaterials for bone regeneration and the potential clinical applications of mechanical stimulation.

13.
iScience ; 25(1): 103722, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35005527

ABSTRACT

SARS-CoV-2 is a newly identified coronavirus that causes the respiratory disease called coronavirus disease 2019 (COVID-19). With an urgent need for therapeutics, we lack a full understanding of the molecular basis of SARS-CoV-2-induced cellular damage and disease progression. Here, we conducted transcriptomic analysis of human PBMCs, identified significant changes in mitochondrial, ion channel, and protein quality-control gene products. SARS-CoV-2 proteins selectively target cellular organelle compartments, including the endoplasmic reticulum and mitochondria. M-protein, NSP6, ORF3A, ORF9C, and ORF10 bind to mitochondrial PTP complex components cyclophilin D, SPG-7, ANT, ATP synthase, and a previously undescribed CCDC58 (coiled-coil domain containing protein 58). Knockdown of CCDC58 or mPTP blocker cyclosporin A pretreatment enhances mitochondrial Ca2+ retention capacity and bioenergetics. SARS-CoV-2 infection exacerbates cardiomyocyte autophagy and promotes cell death that was suppressed by cyclosporin A treatment. Our findings reveal that SARS-CoV-2 viral proteins suppress cardiomyocyte mitochondrial function that disrupts cardiomyocyte Ca2+ cycling and cell viability.

14.
J Hazard Mater ; 424(Pt C): 127655, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34773795

ABSTRACT

In this work, a novel Ni-doped PbO2 anode (Ni-PbO2) was prepared via a co-electrodeposition method and used to remove Ni-ethylenediaminetetraacetic acid (Ni-EDTA) from solutions typical of electroless nickel plating wastewater. Compared with a pure PbO2 electrode, Ni doping increased the oxygen evolution potential as well as the reactive surface area and reactive site concentration and reduced the electron transfer resistance thereby resulting in superior Ni-EDTA degradation performance. The 1% Ni-doped PbO2 electrode exhibited the best electrochemical oxidation activity with a Ni-EDTA removal efficiency of 96.5 ± 1.2%, a Ni removal efficiency of 52.1 ± 1.4% and an energy consumption of 2.6 kWh m-3. Further investigations revealed that 1% Ni doping enhanced both direct oxidation and hydroxyl radical mediated oxidation processes involved in Ni-EDTA degradation. A mechanism for Ni-EDTA degradation is proposed based on the identified products. The free nickel ion concentration initially increased as a result of the degradation of Ni-EDTA complexes and subsequently decreased as a consequence of nickel electrodeposition on the cathode surface. Further characterization of the cathode deposits by X-ray diffraction and X-ray photoelectron spectra indicated that the deposition products were a mixture of Ni0, NiO and Ni(OH)2 with elemental Ni accounting for roughly 80% of the deposited nickel. Results of this study pave the way for the application of anodic oxidation processes for efficient degradation of Ni-containing complexes and recovery of Ni from nickel-containing wastewaters.

15.
Biosensors (Basel) ; 13(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36671864

ABSTRACT

Infectious pathogens cause severe threats to public health due to their frightening infectivity and lethal capacity. Rapid and accurate detection of pathogens is of great significance for preventing their infection. Gold nanoparticles have drawn considerable attention in colorimetric biosensing during the past decades due to their unique physicochemical properties. Colorimetric diagnosis platforms based on functionalized AuNPs are emerging as a promising pathogen-analysis technique with the merits of high sensitivity, low-cost, and easy operation. This review summarizes the recent development in this field. We first introduce the significance of detecting pathogens and the characteristics of gold nanoparticles. Four types of colorimetric strategies, including the application of indirect target-mediated aggregation, chromogenic substrate-mediated catalytic activity, point-of-care testing (POCT) devices, and machine learning-assisted colorimetric sensor arrays, are systematically introduced. In particular, three biomolecule-functionalized AuNP-based colorimetric sensors are described in detail. Finally, we conclude by presenting our subjective views on the present challenges and some appropriate suggestions for future research directions of colorimetric sensors.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Biosensing Techniques/methods
16.
J Healthc Eng ; 2021: 9938874, 2021.
Article in English | MEDLINE | ID: mdl-34956584

ABSTRACT

This study aimed to explore the influence of hesperidin on the polarization of microglia to clarify the key mechanism of regulating the polarization of M2 microglia. C57BL/6 mice were randomly divided into middle cerebral artery occlusion model group (MCAO group), MCAO + hesperidin treatment group (MCAO + hesperidin group), and sham group (sham operation group). The mice were assessed with neurological scores for their functional status. 2,3,5-Triphenyltetrazole chloride (TTC) was used to determine the volume of cerebral infarction. Hematoxylin and eosin (H&E) staining was performed to detect brain loss. The system with 1% O2, 5% CO2, and 92% N2 was applied to establish BV2 in vitro model induced by MCAO. TNF-α, IL-1ß, TGF-ß, and IL-10 levels of cytokines in the supernatant were detected by ELISA. RT-qPCR was used to detect mRNA levels of M1 iNOS, CD11b, CD32, and CD86, and mRNA levels of M2 CD206, Arg-1, and TGF-ß. The Iba-1, iNOS, and Arg-1 of microglia and protein levels of TLR4 and p-NF-κB related to the pathway were detected by Western blot. After treatment with hesperidin, BV2 cells induced by MCAO in vitro can reduce the proinflammatory cytokines of TNF-α and IL-1ß significantly, further upregulating anti-inflammatory cytokines of TGF-ß, IL-10 while inhibiting TLR4 and p-NF-κB expression. The MCAO-induced BV2 cells treated by TLR-4 inhibitor TAK-242 and NF-κB inhibitor BAY 11-7082 had similar polarization effects to those treated with hesperidin. This study found that hesperetin gavage treatment can improve the neurological deficit and regulate the polarization of microglia in MCAO mice. In vitro experiments further verified that hesperidin plays a neuroprotective role by inhibiting the TLR4-NF-κB pathway, thus providing new targets and strategies for neuroprotection and nerve repair after ischemic stroke.


Subject(s)
Hesperidin , Ischemic Stroke , Neuroprotective Agents , Animals , Mice , Cytokines/metabolism , Cytokines/pharmacology , Hesperidin/metabolism , Hesperidin/pharmacology , Hesperidin/therapeutic use , Interleukin-10/metabolism , Interleukin-10/pharmacology , Mice, Inbred C57BL , Microglia/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/pharmacology , RNA, Messenger , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
17.
iScience ; 24(11): 103339, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34816101

ABSTRACT

Transformation of naive macrophages into classically (M1) or alternatively (M2) activated macrophages regulates the inflammatory response. Here, we identified that distinct Ca2+ entry channels determine the IFNγ-induced M1 or IL-4-induced M2 transition. Naive or M2 macrophages exhibit a robust Ca2+ entry that was dependent on Orai1 channels, whereas the M1 phenotype showed a non-selective TRPC1 current. Blockade of Ca2+ entry suppresses pNF-κB/pJNK/STAT1 or STAT6 signaling events and consequently lowers cytokine production that is essential for M1 or M2 functions. Of importance, LPS stimulation shifted M2 cells from Orai1 toward TRPC1-mediated Ca2+ entry and TRPC1-/- mice exhibited transcriptional changes that suppress pro-inflammatory cytokines. In contrast, Orai1-/- macrophages showed a decrease in anti-inflammatory cytokines and exhibited a suppression of mitochondrial oxygen consumption rate and inhibited mitochondrial shape transition specifically in the M2 cells. Finally, alterations in TRPC1 or Orai1 expression determine macrophage polarization suggesting a distinct role of Ca2+ channels in modulating macrophage transformation.

18.
NPJ Regen Med ; 6(1): 67, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34671058

ABSTRACT

Stem cells have indefinite self-renewable capability; however, factors that modulate their pluripotency/function are not fully identified. Here we show that store-dependent Ca2+ entry is essential for modulating the function of bone marrow-derived mesenchymal stem cells (MSCs). Increasing external Ca2+ modulated cell cycle progression that was critical for MSCs survival. Additionally, Ca2+ was critical for stem proliferation, its differentiation, and maintaining stem cell potential. Ca2+ channel characterization, including gene silencing, showed two distinct Ca2+ entry channels (through Orai1/TRPC1 or via Orai3) that differentially regulate the proliferation and viability of MSCs. Importantly, NFκB translocation, but not JNK/ERK into the nucleus, was observed upon store depletion, which was blocked by the addition of Ca2+ channel inhibitors. Radiation lead to a decrease in saliva secretion, decrease in acinar cell number, and enlarged ducts were observed, which were restored by the transplantation of stem cells that were propagated in higher Ca2+. Finally radiation showed a decrese in TRPC1 expression along with a decrese in AQP5, which was again restored upon MSC tranplantation. Together these results suggest that Ca2+ entry is essential for stem cell function that could be critical for regenerative medicine.

19.
Stem Cell Res ; 56: 102560, 2021 10.
Article in English | MEDLINE | ID: mdl-34624617

ABSTRACT

Aging is an inescapable complex physiological but extendable process, and all cells, including stem cells, are altered over time. Diverse mechanism(s) could modulate stem cell number, their proliferation rate, and promote tissue repair during aging that leads to longevity. However, the factors that could restore aging stem cell potency and would lead to healthy aging are not fully identified. Here we show that maintaining cytosolic Ca2+ levels was essential for modulating stem cells function in aged mesenchymal stem cells (MSCs). Increasing external Ca2+ induced spindle shape stem cell morphology and maintained stem cell surface marker expression in aged bone marrow-derived MSCs. Similarly, stem cell survival and proliferation of aged MSCs was dependent on cytosolic Ca2+ levels. Importantly, Ca2+ entry potentiated cell cycle progression, and stem cell potential was increased in cells incubated with higher external Ca2+. Moreover, blocking Ca2+ entry using SKF 96365, decreased stem cell survival and its proliferation but, treatment with 2-APB did not significantly affected cell proliferation, rather only modulated cell viability. Evaluation of Ca2+ entry channels, showed that TRPC1/Orai1/Orai3 and their regulator STIM1 was essential for MSCs proliferation/viability as gene silencing of Orai1/Orai3/TRPC1/STIM1 significantly inhibited stem cell viability. Finally, MSCs isolated from aged mice that were subjected to higher Ca2+ levels, were able to rescue age-induced loss of MSCs function. Together these results suggest that Ca2+ entry is essential for preventing the loss of aged stem cell function and supplementing Ca2+ not only restored their proliferative potential but, allowed them to develop into younger stem cell lineages that could be critical for regenerative medicine.


Subject(s)
Calcium Channels , Mesenchymal Stem Cells , Animals , Calcium/metabolism , Cell Proliferation , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Mice , ORAI1 Protein , Stem Cells/metabolism , Stromal Interaction Molecule 1 , TRPC Cation Channels
20.
Cells ; 10(8)2021 08 18.
Article in English | MEDLINE | ID: mdl-34440894

ABSTRACT

Calcium (Ca2+) functions as a second messenger that is critical in regulating fundamental physiological functions such as cell growth/development, cell survival, neuronal development and/or the maintenance of cellular functions. The coordination among various proteins/pumps/Ca2+ channels and Ca2+ storage in various organelles is critical in maintaining cytosolic Ca2+ levels that provide the spatial resolution needed for cellular homeostasis. An important regulatory aspect of Ca2+ homeostasis is a store operated Ca2+ entry (SOCE) mechanism that is activated by the depletion of Ca2+ from internal ER stores and has gained much attention for influencing functions in both excitable and non-excitable cells. Ca2+ has been shown to regulate opposing functions such as autophagy, that promote cell survival; on the other hand, Ca2+ also regulates programmed cell death processes such as apoptosis. The functional significance of the TRP/Orai channels has been elaborately studied; however, information on how they can modulate opposing functions and modulate function in excitable and non-excitable cells is limited. Importantly, perturbations in SOCE have been implicated in a spectrum of pathological neurodegenerative conditions. The critical role of autophagy machinery in the pathogenesis of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases, would presumably unveil avenues for plausible therapeutic interventions for these diseases. We thus review the role of SOCE-regulated Ca2+ signaling in modulating these diverse functions in stem cell, immune regulation and neuromodulation.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Animals , Autophagy/physiology , Calcium Signaling/physiology , Humans , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...