Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(2)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34614484

ABSTRACT

In nanocomposite electrodes, besides the synergistic effect that takes advantage of the merits of each component, phase interfaces between the components would contribute significantly to the overall electrochemical properties. However, the knowledge of such effects is far from being well developed up to now. The present work aims at a mechanistic understanding of the phase interface effect in C@TiO2core-shell nanocomposite anode which is both scientifically and industrially important. Firstly, amorphous C, anatase TiO2and C@anatse-TiO2electrodes are compared. The C@anatase-TiO2shows an obvious higher specific capacity (316.5 mAh g-1at a current density of 37 mA g-1after 100 cycles) and Li-ion diffusion coefficient (4.0 × 10-14cm2s-1) than the amorphous C (178 mAh g-1and 2.9 × 10-15cm2s-1) and anatase TiO2(120 mAh g-1and 1.6 × 10-15cm2s-1) owing to the C/TiO2phase interface effect. Then, C@anatase/rutile-TiO2is obtained by a heat treatment of the C@anatase-TiO2. Due to an anatase-to-rutile phase transformation and diffusion of C along the anatase/rutile phase interface, additional abundant C/TiO2phase interfaces are created. This endows the C@anatase/rutile-TiO2with further boosted specific capacity (409.4 mAh g-1at 37 mA g-1after 100 cycles) and Li-ion diffusion coefficient (3.2 × 10-13cm2s-1), and excellent rate capability (368.6 mAh g-1at 444 mA g-1). These greatly enhanced electrochemical properties explicitly reveal phase interface engineering as a feasible way to boost the electrochemical performance of nanocomposite anodes for Li-ion batteries.

2.
ACS Appl Mater Interfaces ; 13(12): 14752-14758, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33729763

ABSTRACT

Constructing composite electrodes is considered to be a feasible way to realize high-specific-capacity Li-ion batteries. The core-double-shell-structured Si@C@TiO2 would be an ideal design for such batteries, considering that carbon (C) can buffer the volume change and TiO2 can constrain the structural deformation of Si. Although the electrochemical performance of the shells themselves is relatively clear, the complexity of the multishell heterointerface always results in an ambiguous understanding about the influence of the heterointerface on the electrochemical properties of the core material. In this work, a multilayer film model that can simplify and simultaneously expand the area of the heterointerface is used to study the heterointerfacial behavior. First, a multilayer film TiO2/C with different numbers of TiO2/C heterointerfaces is studied. It shows that the electrochemical performance is enhanced apparently by increasing the number of TiO2/C heterointerfaces. On the one hand, the TiO2/C heterointerface exhibits a strong lithium-ion storage capacity. On the other hand, the TiO2/C heterointerface appears to effectively promote the local Li-ion concentration gradient and thus boost the Li-ion transport kinetics. Then, TiO2/C is combined with Si to construct a composite anode Si/C/TiO2. An obvious advantage of TiO2/C over single TiO2 and C is observed. The utilization rate of Si is greatly improved in the first cycle and reaches up to 98% in Si/C/TiO2. The results suggest that the electrochemical performance of Si can be greatly manipulated by the heterointerface between the multishells.

3.
Nanotechnology ; 32(14): 145402, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33333500

ABSTRACT

Tin/carbon (Sn/C) nanocomposite is considered as a promising anode material for high-performance Li-ion batteries (LIBs). However, since the carbon matrix is always derived from high-temperature carbonization of polymers and Sn has a low melting point (232 °C), the Sn nanoparticles in the Sn/C tend to be heavily aggregated during the carbonization process. It is thus challenging to synthesize well-dispersed Sn nanoparticles in a carbon matrix. Here, we report a facile templating method to encapsulate uniform well-dispersed Sn nanoparticles in amorphous carbon tube (Sn@aCT). The electrode fabricated with the hierarchical Sn@aCT exhibits excellent cycle performance. A stable specific capacity of 870 mAh g-1 after 350 cycles and a Li-ion diffusion coefficient as high as [Formula: see text] are obtained. Meanwhile, the intermediate structure of SnO2@aCT and a carbon-coated Sn yolk-shell nanostructure (Sn@C-YS) are investigated for comparison. The results further manifest the advantage of the architecture of the Sn@aCT. Our strategy provides a feasible way to optimize Sn/C nanocomposite as a high-performance anode material for LIBs.

4.
Sensors (Basel) ; 20(15)2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32722524

ABSTRACT

When providing route guidance to pedestrians, one of the major safety considerations is to ensure that streets are crossed at places with pedestrian crossings. As a result, map service providers are keen to gather the location information about pedestrian crossings in the road network. Most, if not all, literature in this field focuses on detecting the pedestrian crossing immediately in front of the camera, while leaving the other pedestrian crossings in the same image undetected. This causes an under-utilization of the information in the video images, because not all pedestrian crossings captured by the camera are detected. In this research, we propose a coarse-to-fine framework to detect pedestrian crossings from probe vehicle videos, which can then be combined with the GPS traces of the corresponding vehicles to determine the exact locations of pedestrian crossings. At the coarse stage of our approach, we identify vanishing points and straight lines associated with the stripes of pedestrian crossings, and partition the edges to obtain rough candidate regions of interest (ROIs). At the fine stage, we determine whether these candidate ROIs are indeed pedestrian crossings by exploring their prior constraint information. Field experiments in Beijing and Shanghai cities show that the proposed approach can produce satisfactory results under a wide variety of situations.

5.
Article in English | MEDLINE | ID: mdl-31329117

ABSTRACT

Due to its local property, guided image filter (GIF) generally suffers from halo artifacts near edges. To make up for the deficiency, a weighted guided image filter (WGIF) was proposed recently by incorporating an edge-aware weighting into the filtering process. It takes the advantages of local and global operations, and achieves better performance in edge-preserving. However, edge direction, a vital property of the guidance image, is not considered fully in these guided filters. In order to overcome the drawback, we propose a novel version of GIF, which can leverage the edge direction more sufficiently. In particular, we utilize the steering kernel to adaptively learn the direction and incorporate the learning results into the filtering process to improve the filter's behavior. Theoretical analysis shows that the proposed method can get more powerful performance with preserving edges and reducing halo artifacts effectively. Similar conclusions are also reached through the thorough experiments including edge-aware smoothing, detail enhancement, denoising and dehazing.

SELECTION OF CITATIONS
SEARCH DETAIL
...