Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Am Chem Soc ; 146(7): 4652-4664, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38265705

ABSTRACT

Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.

2.
Adv Mater ; 36(4): e2308987, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37883889

ABSTRACT

Flexible quasi-solid-state sodium ion batteries featuring their low-cost, high safety and excellent mechanical strength have attracted widespread interest in the field of wearable electronic devices. However, the development of such batteries faces great challenges including the construction of interfacial compatible flexible electrode materials and addressing the high safety demands of electrolyte. Here selenium-vacancies regulated bimetallic selenide heterojunctions anchored on waste cotton cloth-derived flexible carbon cloth (FCC) with robust interfacial C-Se-Co/Fe chemical bonds as a flexible anode material (CCFSF) is proposed by ultrafast microwave pyrolysis method. Rich selenium vacancies and CoSe2 /FeSe2-x heterostructures are synchronously formed that can significantly improve ionic and electronic diffusion kinetics. Additionally, a uniform carbon layer coating on the surface of Se-deficient heterostructures endows it with outstanding structural stability. The flexible cathode (PB@FCC) is also fabricated by directly growing Prussian blue nanoparticles on the FCC. Furthermore, an advanced flexible quasi-solid-state Na-ion pouch cell is assembled by coupling CCFSF anode, PB@FCC cathode with P(VDF-HFP)-based gel polymer electrolyte. The full cell not only demonstrates excellent energy storage performance but also robust mechanical flexibility and safety. The present work offers an effective avenue to achieve high safety flexible energy storage device, promoting the development of flexible wearable electronic devices.

3.
Biosensors (Basel) ; 13(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37754093

ABSTRACT

Sesamol (SM) is a potent natural antioxidant that can quench free radicals and modulate the cholinergic system in the brain, thereby ameliorating memory and cognitive impairment in Alzheimer's disease patients. Moreover, the total antioxidant capacity can be amplified by synergistic interactions between different antioxidants. Here, we constructed a ternary heterojunction graphitic carbon nitride/cupric sulfide/titanium dioxide (g-C3N4/CuS/TiO2) photoelectrochemical (PEC) sensor for the quantification of SM and its synergistic interactions with other antioxidants. Crucially, the Schottky barrier in ternary semiconductors considerably enhances electron transfer. The PEC sensor showed a wide linear range for SM detection, ranging from 2 to 1277 µmol L-1, and had a limit of detection of 1.8 µmol L-1. Remarkably, this sensing platform could evaluate the synergism between SM and five typical lipid-soluble antioxidants: tert-butyl hydroquinone, vitamin E, butyl hydroxyanisole, propyl gallate, and butylated hydroxytoluene. Owing to its low redox potential, SM could reduce antioxidant radicals and promote their regeneration, which increased the overall antioxidant performance. The g-C3N4/CuS/TiO2 PEC sensor exhibited high sensitivity, satisfactory selectivity, and stability, and was successfully applied for SM determination in both soybean and peanut oils. The findings of this study provide guidance for the development of nutritional foods, nutrition analysis, and the treatment of diseases caused by free radicals.


Subject(s)
Antioxidants
5.
ACS Appl Mater Interfaces ; 15(36): 42603-42610, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37639524

ABSTRACT

Organic materials have garnered intensive focus as a new group of electrodes for lithium-ion batteries (LIBs). However, many reported organic electrodes so far still exhibit unsatisfying cycling stability because of the dissolution in the electrolytes. Herein, a novel azo-linked hexaazatrianphthalene (HATN)-based polymer (AZO-HATN-AQ) is designed and fabricated by the polymerization of trinitrodiquinoxalino[2,3-a:2',3'-c]phenazine (HATNTN) and 2,6-diaminoanthraquinone (DAAQ). The abundant redox-active sites, extended π-conjugated planar conformation, and low energy gap endow the AZO-HATN-AQ electrode with high theoretical capacity, excellent solubility resistance, and fast Li-ion transport. In particular, the fully lithiated AZO-HATN-AQ still keeps the planar structure, contributing to the excellent cycling stability. As a result, AZO-HATN-AQ cathodes show high specific capacity (240 mAh g-1 at 0.05 A g-1), prominent rate capability (98 mAh g-1 at 8 A g-1), and outstanding cycling stability (120 mAh g-1 after 2000 cycles at 4 A g-1 with 85.7% capacity retention) simultaneously. This study demonstrates that rational structure design of the polymer electrodes is an effective approach to achieving excellent comprehensive electrochemical performance.

6.
Adv Sci (Weinh) ; 10(25): e2302654, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37381631

ABSTRACT

Special separation membranes are widely employed for separation and purification purposes under challenging operating conditions due to their low energy consumption, excellent solvent, and corrosion resistance. However, the development of membranes is limited by corrosion-resistant polymer substrates and precise interfacial separation layers. Herein, polyaniline (PANI) is employed to achieve insitu anchoring of multiple interfaces, resulting in the fabrication of polyaniline@graphene oxide/polyether ether ketone (PANI@GO/PEEK) membranes. Insitu growth of PANI achieves the adequate bonding of the PEEK substrate and GO separation interface, which solves the problem of solution processing of PEEK and the instability of GO layers. By bottom-up confined polymerization of aniline, it could control the pore size of the separation layer, correct defects, and anchor among polymer, nano-separation layer, and nano-sheet. The mechanism of membrane construction within the confined domain and micro-nano structure modulation is further explored. The membranes demonstrate exceptional stability realizing over 90% rejection in 2 m HCl, NaOH, and high temperatures. Additionally, -membranes exhibit remarkable durability after 240 days immersion and 100 h long-term operation, which display the methanol flux of 50.2 L m-2 h-1 and 92% rejection of AF (585 g mol-1 ). This method substantially contributes to special separation membranes by offering a novel strategy.

10.
Sci Bull (Beijing) ; 67(15): 1581-1588, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36546286

ABSTRACT

Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries, the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers. Herein, by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether, the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ. This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport. Consequently, the graphite anode retained a prolonged cycling capability of up to 1400cycles (245 mA h g-1, remaining above 12mon) with an excellent capacity retention of as high as 92.4%. This is superior to those of conventional and high-concentration electrolytes. Thus, the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite, providing a potential application prospect for K-storage evolution.

11.
ACS Appl Mater Interfaces ; 14(32): 36700-36710, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35938596

ABSTRACT

A novel hexaazatrinaphthylene-based (HATN) azo polymer (PAH) was synthesized from a newly designed tri-nitro compound trinitrodiquinoxalino[2,3-a:2',3'-c]phenazine (HATNTN) through a Zn-induced reductive homocoupling reaction and used as a cathode material for lithium-ion batteries (LIBs). The integration of redox-active HATN units and azo linkages can improve the specific capacity, rate performance, and cycling stability of the PAH cathode. The control LIBs were assembled from HATNTN, in which HATNTN can be electrochemically reduced to an HATN-based azo polymer. Compared with the HATNTN cathode, the PAH cathode delivers higher specific capacities with much-improved cycling stability (97 mA h g-1 capacity retention after 1500 cycles at 500 mA g-1, which is around 28 times that of the HATNTN cathode) and considerably better rate performance (118 mA h g-1 at 2000 mA g-1, which is around 90 times that of the HATNTN cathode), simultaneously. This work provides a chemical polymerization strategy to construct extended π-conjugated azo polymers with multiple redox centers from nitro compounds for developing high-performance LIBs.

12.
Anal Methods ; 14(32): 3079-3086, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35916293

ABSTRACT

p-Cresol is a harmful phenolic substance that can cause serious effects on human health even at a low concentration in water. Therefore, the detection of p-cresol in a water environment is particularly important. In this paper, a novel zeolite imidazolate framework-67 (ZIF-67) material with regular morphology was prepared on the surface of graphene oxide doped with silver nanoparticles. The composite was modified on the glassy carbon electrode surface to increase the specific surface area, accelerate the electron transfer rate, enhance the current response and improve the performance of electrochemical sensors. Furthermore, a layer of p-cresol-molecularly imprinted polymer was prepared on the surface of the modified electrode by electropolymerization for the selective, rapid and sensitive detection of p-cresol, which greatly improved the specific recognition of p-cresol. Under optimal conditions, the prepared sensor had a good linear range of 1.0 × 10-10 M to 1.0 × 10-5 M with a detection limit as low as 5.4 × 10-11 M, and it presented excellent reproducibility, stability and selectivity. Moreover, the sensor was successfully applied for the detection of trace p-cresol in a real water environment, providing a reliable assay for sensitive, rapid and selective detection of p-cresol in complex samples.


Subject(s)
Metal Nanoparticles , Molecular Imprinting , Zeolites , Cresols , Electrochemical Techniques , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Reproducibility of Results , Silver , Water
13.
Anal Chem ; 94(29): 10487-10496, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35839308

ABSTRACT

The determination of ammonium ions (NH4+) is of significance to environmental, agriculture, and human health. Potentiometric NH4+ sensors based on solid-contact ion selective electrodes (SC-ISEs) feature point-of-care testing and miniaturization. However, the state-of-the-art SC-ISEs of NH4+ during the past 20 years strongly rely on the organic ammonium ionophore-based ion selective membrane (ISM), typically by nonactin for the NH4+ recognition. Herein, we report a Prussian blue analogue of copper(II)-hexacyanoferrate (CuHCF) for an ISM-free potentiometric NH4+ sensor without using the ionophores. CuHCF works as a bifunctional transducer that could realize the ion-to-electron transduction and NH4+ recognition. CuHCF exhibits competitive analytical performances regarding traditional nonactin-based SC-ISEs of NH4+, particularly for the selectivity toward K+. The cost and preparation process have been remarkably reduced. The theoretical calculation combined with electrochemical tests further demonstrate that relatively easier intercalation of NH4+ into the lattices of CuHCF determines its selectivity. This work provides a concept of the ISM-free potentiometric NH4+ sensor beyond the nonactin ionophore through a CuHCF bifunctional transducer.


Subject(s)
Ammonium Compounds , Ion-Selective Electrodes , Ferrocyanides , Humans , Ionophores , Macrolides , Transducers
14.
Oncol Lett ; 24(2): 254, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35765272

ABSTRACT

Cutaneous squamous cell carcinoma (CSCC) is one of the most common non-melanoma skin cancers worldwide. Fatty acid-binding protein 7 (FABP7) has been reported to be involved in the occurrence, development, metastasis and prognosis of various tumors. In addition, downregulated FABP7 expression was demonstrated in cutaneous malignant melanoma in a previous study. Therefore, we speculated that FABP7 may be a biomarker for CSCC diagnosis. The aim of the present study was to determine the molecular mechanism underlying the effects of FABP7 in CSCC, which may provide a new diagnostic biomarker or treatment target for CSCC. Reverse transcription-PCR, western blotting and immunohistochemistry assays were performed to detect the expression levels of FABP7 in CSCC tissues and cells. Overexpression of FABP7 was achieved in A431 and colo-16 cell lines by transfection with an overexpression vector (oeFABP7). Cell proliferation, colony formation, migration and invasion were detected by Cell Counting Kit-8, crystal violet, scratch and Transwell assays, respectively. Following FABP7 overexpression, western blotting was used to determine the expression levels of proliferation-, invasion- and Notch pathway-associated proteins, including Snail, N-cadherin, Twist, matrix metalloproteinase (MMP)-2, MMP-7, Notch 1 and Notch 3. In addition a CSCC model in nude mice was constructed. Immunohistochemistry was used to determine the expression levels of FABP7, Ki67, Notch 1 and Notch 3. It was demonstrated that FABP7 expression levels were significantly reduced in human CSCC tissues and cells compared with normal samples. Overexpression of FABP7 inhibited the proliferation, invasion and migration abilities of A431 and colo-16 cells compared with those in the negative control group. In addition, transfection with oeFABP7 reduced the expression levels of proliferation-, invasion- and Notch pathway-associated proteins compared with those in the negative control group. Overexpression of FABP7 also reduced the growth of CSCC tumors in vivo and inhibited the expression of Ki67, Notch 1 and Notch 3. Therefore, the results of the present study suggested that FABP7 may inhibit the proliferation and invasion of CSCC cells via the Notch signaling pathway.

15.
Talanta ; 245: 123481, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35500463

ABSTRACT

Here, we developed a wearable electrochemical sensor for pH and K+ monitoring in sweat. The sensor was composed of flexible reference electrode, pH response electrode and K+ selective electrode, which were prepared through printing ß-CD functionalized graphene (ß-CD/RGO) water suspension on conductive PET substrate with microelectronic printer. ß-CD/RGO not only served as the pH sensitive material for pH response electrode with good sensitivity, selectivity and reproducibility due to its abundant oxygen-containing functional groups, but also worked as the ion-to-electron transducer for K+ selective electrode with good sensitivity. The wearable sensor exhibited good potential stability at different bending states. On-body sweat pH and K+ measurements showed high accuracy compared with ex-situ analysis.


Subject(s)
Biosensing Techniques , Graphite , Wearable Electronic Devices , Electrochemical Techniques , Hydrogen-Ion Concentration , Ions , Potassium , Reproducibility of Results , Sweat
16.
Adv Mater ; 34(14): e2110108, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35112405

ABSTRACT

Impossible voltage plateau regulation for the cathode materials with fixed active elemental center is a pressing issue hindering the development of Na-superionic-conductor (NASICON)-type Na3 V2 (PO4 )2 F3 (NVPF) cathodes in sodium-ion batteries (SIBs). Herein, a high-entropy substitution strategy, to alter the detailed crystal structure of NVPF without changing the central active V atom, is pioneeringly utilized, achieving simultaneous electronic conductivity enhancement and diffusion barrier reduction for Na+ , according to theoretical calculations. The as-prepared carbon-free high-entropy Na3 V1.9 (Ca,Mg,Al,Cr,Mn)0.1 (PO4 )2 F3 (HE-NVPF) cathode can deliver higher mean voltage of 3.81 V and more advantageous energy density up to 445.5 Wh kg-1 , which is attributed by the diverse transition-metal elemental substitution in high-entropy crystalline. More importantly, high-entropy introduction can help realize disordered rearrangement of Na+ at Na(2) active sites, thereby to refrain from unfavorable discharging behaviors at low-voltage region, further lifting up the mean working voltage to realize a full Na-ion storage at the high voltage plateau. Coupling with a hard carbon (HC) anode, HE-NVPF//HC SIB full cells can deliver high specific energy density of 326.8 Wh kg-1 at 5 C with the power density of 2178.9 W kg-1 . This route means the unlikely potential regulation in NASICON-type crystal with unchangeable active center becomes possible, inspiring new ideas on elevating the mean working voltage for SIB cathodes.

17.
Adv Sci (Weinh) ; 9(1): e2103706, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34766471

ABSTRACT

Confined polymerization is an effective method for precise synthesis, which can further control the micro-nano structure inside the composite material. Polyaniline (PANI)-based composites are usually prepared by blending and original growth methods. However, due to the strong rigidity and hydrogen bonding of PANI, the content of PANI composites is low and easy to agglomerate. Here, based on confined polymerization, it is reported that polyaniline /polyether ether ketone (PANI/PEEK) film with high PANI content is synthesized in situ by a one-step method. The micro-nano structure of the two polymers in the confined space is further explored and it is found that PANI grows in the free volume of the PEEK chain, making the arrangement of the PEEK chain more orderly. Under the best experimental conditions, the prepared 16 µm-PANI/PEEK film has a dielectric constant of 205.4 (dielectric loss 0.401), the 75 µm-PANI/PEEK film has a conductivity of 3.01×10-4 S m-1 . The prepared PANI/PEEK composite film can be further used as electronic packaging materials, conductive materials, and other fields, which has potential application prospects in anti-static, electromagnetic shielding materials, corrosion resistance, and other fields.

18.
ACS Meas Sci Au ; 2(6): 568-575, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36785773

ABSTRACT

Solid-contact ion-selective electrodes are a type of ion measurement devices that have been focused in wearable biotechnology based on the features of miniaturization and integration. However, the solid-contact reference electrodes (SC-REs) remain relatively less focused compared with numerous working (or indicator) electrodes. Most SC-REs in wearable sensors rely on Ag/AgCl reference electrodes with solid electrolytes, for example, the hydrophilic electrolyte salts in polymer matrix, but face the risk of electrolyte leakage. Herein, we report a type of SC-REs based on the silver/silver tetraphenylborate (Ag/AgTPB) organic insoluble electrode. The SC-RE consists of a Ag substrate, a solid contact (AgTPB), and a plasticized poly(vinyl chloride) (PVC) membrane containing the hydrophobic organic salt of tetrabutylammonium tetraphenylborate (TBATPB). The potentiometric measurements demonstrated that the SC-RE of Ag/AgTPB/PVC-TBATPB showed a reproducible standard potential in various electrolytes and disclosed high long-term stability. This SC-RE was further fabricated on a flexible substrate and integrated into all-solid-state wearable potentiometric ion sensor for sweat Cl- monitoring.

19.
Membranes (Basel) ; 11(12)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34940460

ABSTRACT

Current solid potentiometric ion sensors mostly rely on polymeric-membrane-based, solid-contact, ion-selective electrodes (SC-ISEs). However, anion sensing has been a challenge with respect to cations due to the rareness of anion ionophores. Classic metal/metal insoluble salt electrodes (such as Ag/AgCl) without an ion-selective membrane (ISM) offer an alternative. In this work, we first compared the two types of SC-ISEs of Cl- with/without the ISM. It is found that the ISM-free Ag/AgCl electrode discloses a comparable selectivity regarding organic chloride ionophores. Additionally, the electrode exhibits better comprehensive performances (stability, reproducibility, and anti-interference ability) than the ISM-based SC-ISE. In addition to Cl-, other Ag/AgX electrodes also work toward single and multi-valent anions sensing. Finally, a flexible Cl- sensor was fabricated for on-body monitoring the concentration of sweat Cl- to illustrate a proof-of-concept application in wearable anion sensors. This work re-emphasizes the ISM-free SC-ISEs for solid anion sensing.

20.
Polymers (Basel) ; 13(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34883658

ABSTRACT

Thermally reversible self-healing polymer (SHP) electrolyte membranes are obtained by Diels-Alder cycloaddition and electrolyte embedding. The SHP electrolytes membranes are found to display high ionic conductivity, suitable flexibility, remarkable mechanical properties and self-healing ability. The decomposition potential of the SHP electrolyte membrane is about 4.8 V (vs. Li/Li+) and it possesses excellent electrochemical stability, better than that of the commercial PE film which is only stable up to 4.5 V (vs. Li/Li+). TGA results show that the SHP electrolyte membrane is thermally stable up to 280 °C in a nitrogen atmosphere. When the SHP electrolyte membrane is used as a separator in a lithium-ion battery with an LCO-based cathode, the SHP membrane achieved excellent rate capability and stable cycling for over 100 cycles, and the specific discharge capacity could be almost fully recovered after self-healing. Furthermore, the electrolyte membrane exhibits excellent electrochemical performance, suggesting its potential for application in lithium-ion batteries as separator material.

SELECTION OF CITATIONS
SEARCH DETAIL
...