Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Article in English | MEDLINE | ID: mdl-38124802

ABSTRACT

Sudden cardiac arrest (SCA) is a common cause of death. The majority of SCA is caused by ventricular arrhythmia due to underlying CHD. Aborted SCA with no apparent diagnosis after initial assessment with ECG, echocardiography and coronary assessment is referred to as unexplained cardiac arrest (UCA). Systematic evaluation of such patients may reveal a specific diagnosis in up to half of patients before a diagnosis of idiopathic VF is assigned. Specific diagnoses include inherited cardiac conditions, such as latent cardiomyopathies or inherited primary electrical disease. Identifying the cause of UCA is therefore not only critical for appropriate management of the SCA survivors to prevent recurrence, but also for their family members who may be at risk of the same condition. This review provides a tiered, systematic approach for the investigation of UCA.

3.
Eur Heart J ; 41(30): 2878-2890, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32533187

ABSTRACT

AIMS: Brugada syndrome (BrS) is characterized by a unique electrocardiogram (ECG) pattern and life-threatening arrhythmias. However, the Type 1 Brugada ECG pattern is often transient, and a genetic cause is only identified in <25% of patients. We sought to identify an additional biomarker for this rare condition. As myocardial inflammation may be present in BrS, we evaluated whether myocardial autoantibodies can be detected in these patients. METHODS AND RESULTS: For antibody (Ab) discovery, normal human ventricular myocardial proteins were solubilized and separated by isoelectric focusing (IEF) and molecular weight on two-dimensional (2D) gels and used to discover Abs by plating with sera from patients with BrS and control subjects. Target proteins were identified by mass spectrometry (MS). Brugada syndrome subjects were defined based on a consensus clinical scoring system. We assessed discovery and validation cohorts by 2D gels, western blots, and ELISA. We performed immunohistochemistry on myocardium from BrS subjects (vs. control). All (3/3) 2D gels exposed to sera from BrS patients demonstrated specific Abs to four proteins, confirmed by MS to be α-cardiac actin, α-skeletal actin, keratin, and connexin-43, vs. 0/8 control subjects. All (18/18) BrS subjects from our validation cohorts demonstrated the same Abs, confirmed by western blots, vs. 0/24 additional controls. ELISA optical densities for all Abs were elevated in all BrS subjects compared to controls. In myocardium obtained from BrS subjects, each protein, as well as SCN5A, demonstrated abnormal protein expression in aggregates. CONCLUSION: A biomarker profile of autoantibodies against four cardiac proteins, namely α-cardiac actin, α-skeletal actin, keratin, and connexin-43, can be identified from sera of BrS patients and is highly sensitive and specific, irrespective of genetic cause for BrS. The four involved proteins, along with the SCN5A-encoded Nav1.5 alpha subunit are expressed abnormally in the myocardium of patients with BrS.


Subject(s)
Brugada Syndrome , Arrhythmias, Cardiac , Autoantibodies , Brugada Syndrome/diagnosis , Electrocardiography , Heart Ventricles , Humans
5.
Eur Heart J Cardiovasc Imaging ; 19(7): 768-776, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29237044

ABSTRACT

Aims: To determine the bioequivalence of several T1 mapping sequences in myocardial characterization of diffuse myocardial fibrosis. Methods and results: We performed an intra-individual sequence comparison of three types of T1 mapping sequences [MOdified Look-Locker Inversion recovery (MOLLI), Shortened MOdified Look-Locker Inversion recovery ((sh)MOLLI), and SAturation recovery single-SHot Acquisition (SASHA)]. We employed two model diseases of diffuse interstitial fibrosis [patients with non-ischaemic dilated cardiomyopathy (NIDCM), n = 32] and aortic stenosis [(AS), n = 25)]. Twenty-six healthy individuals served as controls. Relationship with collagen volume fraction (CVF) was assessed using endomyocardial biopsies (EMB) intraoperatively in 12 AS patients. T2 mapping (GraSE) was also performed. Myocardial native T1 with MOLLI and shMOLLI showed, firstly, an excellent discriminatory accuracy between health and disease [area under the curves (P-value): 0.94 (0.88-0.99); 0.87 (0.79-0.94); 0.61 (0.49-0.72)], secondly, relationship between histological CVF [native T1 MOLLI vs. shMOLLI vs. SASHA: r = 0.582 (P = 0.027), r = 0.524 (P = 0.046), r = 0.443 (P = 0.150)], and thirdly, with native T2 [r = 0.628(P < 0.001), r = 0.459 (P = 0.003), r = 0.211 (P = 0.083)]. The respective relationships for extracellular volume fraction with CVF [r = 0.489 (P = 0.044), r = 0.417 (0.071), r = 0.353 (P = 0.287)] were significant for MOLLI, but not other sequences. In AS patients, native T2 was significantly higher compared to controls, and associated with levels of C-reactive protein and troponin. Conclusion: T1 mapping sequences differ in their bioequivalence for discrimination between health and disease as well as associations with diffuse myocardial fibrosis.


Subject(s)
Body Surface Potential Mapping/methods , Cardiomyopathies/diagnostic imaging , Heart Failure/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Adult , Aged , Cardiomyopathies/pathology , Cohort Studies , Contrast Media , Female , Heart Failure/pathology , Humans , Male , Middle Aged , Phantoms, Imaging , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity
6.
Circulation ; 137(2): 166-183, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29030347

ABSTRACT

BACKGROUND: Extracellular matrix (ECM) remodeling contributes to in-stent restenosis and thrombosis. Despite its important clinical implications, little is known about ECM changes post-stent implantation. METHODS: Bare-metal and drug-eluting stents were implanted in pig coronary arteries with an overstretch under optical coherence tomography guidance. Stented segments were harvested 1, 3, 7, 14, and 28 days post-stenting for proteomics analysis of the media and neointima. RESULTS: A total of 151 ECM and ECM-associated proteins were identified by mass spectrometry. After stent implantation, proteins involved in regulating calcification were upregulated in the neointima of drug-eluting stents. The earliest changes in the media were proteins involved in inflammation and thrombosis, followed by changes in regulatory ECM proteins. By day 28, basement membrane proteins were reduced in drug-eluting stents in comparison with bare-metal stents. In contrast, the large aggregating proteoglycan aggrecan was increased. Aggrecanases of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family contribute to the catabolism of vascular proteoglycans. An increase in ADAMTS-specific aggrecan fragments was accompanied by a notable shift from ADAMTS1 and ADAMTS5 to ADAMTS4 gene expression after stent implantation. Immunostaining in human stented coronary arteries confirmed the presence of aggrecan and aggrecan fragments, in particular, at the contacts of the stent struts with the artery. Further investigation of aggrecan presence in the human vasculature revealed that aggrecan and aggrecan cleavage were more abundant in human arteries than in human veins. In addition, aggrecan synthesis was induced on grafting a vein into the arterial circulation, suggesting an important role for aggrecan in vascular plasticity. Finally, lack of ADAMTS-5 activity in mice resulted in an accumulation of aggrecan and a dilation of the thoracic aorta, confirming that aggrecanase activity regulates aggrecan abundance in the arterial wall and contributes to vascular remodeling. CONCLUSIONS: Significant differences were identified by proteomics in the ECM of coronary arteries after bare-metal and drug-eluting stent implantation, most notably an upregulation of aggrecan, a major ECM component of cartilaginous tissues that confers resistance to compression. The accumulation of aggrecan coincided with a shift in ADAMTS gene expression. This study provides the first evidence implicating aggrecan and aggrecanases in the vascular injury response after stenting.


Subject(s)
ADAMTS Proteins/metabolism , Aggrecans , Coronary Vessels/surgery , Endopeptidases/metabolism , Extracellular Matrix/enzymology , Percutaneous Coronary Intervention/instrumentation , Proteomics/methods , Stents , Vascular Remodeling , ADAMTS Proteins/genetics , ADAMTS5 Protein/genetics , ADAMTS5 Protein/metabolism , Animals , Chromatography, High Pressure Liquid , Coronary Vessels/enzymology , Coronary Vessels/physiopathology , Drug-Eluting Stents , Endopeptidases/genetics , Female , Humans , Male , Metals , Mice, Knockout , Models, Animal , Neointima , Prosthesis Design , Signal Transduction , Sus scrofa , Tandem Mass Spectrometry , Time Factors
7.
J Clin Invest ; 127(4): 1546-1560, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28319050

ABSTRACT

BACKGROUND: The identification of patients with high-risk atherosclerotic plaques prior to the manifestation of clinical events remains challenging. Recent findings question histology- and imaging-based definitions of the "vulnerable plaque," necessitating an improved approach for predicting onset of symptoms. METHODS: We performed a proteomics comparison of the vascular extracellular matrix and associated molecules in human carotid endarterectomy specimens from 6 symptomatic versus 6 asymptomatic patients to identify a protein signature for high-risk atherosclerotic plaques. Proteomics data were integrated with gene expression profiling of 121 carotid endarterectomies and an analysis of protein secretion by lipid-loaded human vascular smooth muscle cells. Finally, epidemiological validation of candidate biomarkers was performed in two community-based studies. RESULTS: Proteomics and at least one of the other two approaches identified a molecular signature of plaques from symptomatic patients that comprised matrix metalloproteinase 9, chitinase 3-like-1, S100 calcium binding protein A8 (S100A8), S100A9, cathepsin B, fibronectin, and galectin-3-binding protein. Biomarker candidates measured in 685 subjects in the Bruneck study were associated with progression to advanced atherosclerosis and incidence of cardiovascular disease over a 10-year follow-up period. A 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein) improved risk prediction and was successfully replicated in an independent cohort, the SAPHIR study. CONCLUSION: The identified 4-biomarker signature may improve risk prediction and diagnostics for the management of cardiovascular disease. Further, our study highlights the strength of tissue-based proteomics for biomarker discovery. FUNDING: UK: British Heart Foundation (BHF); King's BHF Center; and the National Institute for Health Research Biomedical Research Center based at Guy's and St Thomas' NHS Foundation Trust and King's College London in partnership with King's College Hospital. Austria: Federal Ministry for Transport, Innovation and Technology (BMVIT); Federal Ministry of Science, Research and Economy (BMWFW); Wirtschaftsagentur Wien; and Standortagentur Tirol.


Subject(s)
Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Plaque, Atherosclerotic/metabolism , Proteome/metabolism , Atherosclerosis/metabolism , Biomarkers/metabolism , Carotid Artery Diseases/metabolism , Carotid Artery Diseases/surgery , Cells, Cultured , Endarterectomy, Carotid , Female , Humans , Male , Myocytes, Smooth Muscle/metabolism , Proteomics
8.
JACC Cardiovasc Imaging ; 9(1): 40-50, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26762873

ABSTRACT

OBJECTIVES: The study sought to examine prognostic relevance of T1 mapping parameters (based on a T1 mapping method) in nonischemic dilated cardiomyopathy (NIDCM) and compare them with conventional markers of adverse outcome. BACKGROUND: NIDCM is a recognized cause of poor clinical outcome. NIDCM is characterized by intrinsic myocardial remodeling due to complex pathophysiological processes affecting myocardium diffusely. Lack of accurate and noninvasive characterization of diffuse myocardial disease limits recognition of early cardiomyopathy and effective clinical management in NIDCM. Cardiac magnetic resonance (CMR) supports detection of diffuse myocardial disease by T1 mapping. METHODS: This is a prospective observational multicenter longitudinal study in 637 consecutive patients with dilated NIDCM (mean age 50 years [interquartile range: 37 to 76 years]; 395 males [62%]) undergoing CMR with T1 mapping and late gadolinium enhancement (LGE) at 1.5-T and 3.0-T. The primary endpoint was all-cause mortality. A composite of heart failure (HF) mortality and hospitalization was a secondary endpoint. RESULTS: During a median follow-up period of 22 months (interquartile range: 19 to 25 months), we observed a total of 28 deaths (22 cardiac) and 68 composite HF events. T1 mapping indices (native T1 and extracellular volume fraction), as well as the presence and extent of LGE, were predictive of all-cause mortality and HF endpoint (p < 0.001 for all). In multivariable analyses, native T1 was the sole independent predictor of all-cause and HF composite endpoints (hazard ratio: 1.1; 95% confidence interval: 1.06 to 1.15; hazard ratio: 1.1; 95% confidence interval: 1.05 to 1.1; p < 0.001 for both), followed by the models including the extent of LGE and right ventricular ejection fraction, respectively. CONCLUSIONS: Noninvasive measures of diffuse myocardial disease by T1 mapping are significantly predictive of all-cause mortality and HF events in NIDCM. We provide a basis for a novel algorithm of risk stratification in NIDCM using a complementary assessment of diffuse and regional disease by T1 mapping and LGE, respectively.


Subject(s)
Cardiomyopathy, Dilated/diagnosis , Heart Failure/etiology , Magnetic Resonance Imaging , Myocardium/pathology , Ventricular Remodeling , Adult , Aged , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/mortality , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Cause of Death , Disease Progression , Europe , Female , Heart Failure/diagnosis , Heart Failure/mortality , Heart Failure/physiopathology , Hospitalization , Humans , Kaplan-Meier Estimate , Longitudinal Studies , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Risk Factors , Stroke Volume , Time Factors , Ventricular Function, Left , Ventricular Function, Right
9.
Mol Cell Proteomics ; 13(10): 2545-57, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24958171

ABSTRACT

In an endotoxaemic mouse model of sepsis, a tissue-based proteomics approach for biomarker discovery identified long pentraxin 3 (PTX3) as the lead candidate for inflamed myocardium. When the redox-sensitive oligomerization state of PTX3 was further investigated, PTX3 accumulated as an octamer as a result of disulfide-bond formation in heart, kidney, and lung-common organ dysfunctions seen in patients with sepsis. Oligomeric moieties of PTX3 were also detectable in circulation. The oligomerization state of PTX3 was quantified over the first 11 days in critically ill adult patients with sepsis. On admission day, there was no difference in the oligomerization state of PTX3 between survivors and non-survivors. From day 2 onward, the conversion of octameric to monomeric PTX3 was consistently associated with a greater survival after 28 days of follow-up. For example, by day 2 post-admission, octameric PTX3 was barely detectable in survivors, but it still constituted more than half of the total PTX3 in non-survivors (p < 0.001). Monomeric PTX3 was inversely associated with cardiac damage markers NT-proBNP and high-sensitivity troponin I and T. Relative to the conventional measurements of total PTX3 or NT-proBNP, the oligomerization of PTX3 was a superior predictor of disease outcome.


Subject(s)
C-Reactive Protein/chemistry , C-Reactive Protein/metabolism , Proteomics/methods , Sepsis/metabolism , Sepsis/mortality , Serum Amyloid P-Component/chemistry , Serum Amyloid P-Component/metabolism , Aged , Animals , Biomarkers/chemistry , Biomarkers/metabolism , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Oxidation-Reduction , Prognosis , Protein Multimerization , Sepsis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...