Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vet World ; 15(1): 173-181, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35369595

ABSTRACT

Background and Aim: Kefir, a natural probiotic containing bacteria and yeast, is a fermented milk product, whereas glucomannan from porang tuber (Amorphophallus oncophyllus) is prebiotic in vivo. Simvastatin is a potent lipid-lowering statin that can be utilized for pharmacological therapy in obesity. This study aimed to determine the effect of goat milk kefir supplemented with porang glucomannan (synbiotic kefir) and goat milk kefir without glucomannan (probiotic kefir) on blood glucose, hemoglobin A1c (HbA1c), free fatty acids (FFAs), tumor necrosis factor-alpha (TNF-α), gene expression of peroxisome proliferator-activated receptor gamma (PPARg), and insulin-producing cells in rats fed a high-fat and high-fructose (HFHF) diet. Materials and Methods: Male Sprague-Dawley rats were divided into five dietary groups: (1) Normal control, (2) rats fed HFHF, (3) rats fed HFHF+probiotic kefir, (4) rats fed HFHF+synbiotic kefir, and (5) rats fed HFHF+simvastatin. All of these treatments were administered for 4 weeks. Results: There were no significant differences in plasma glucose levels in HFHF diet-fed rats before and after treatment. However, plasma HbA1c and TNF-α decreased, and FFAs were inhibited in rats after treatment with synbiotic kefir. Synbiotic kefir decreased the gene expression of PPARγ2 in HFHF diet-fed rats but did not affect the total number of islets of Langerhans and insulin-producing cells. Conclusion: Synbiotic kefir improved the health of rats fed an HFHF diet by decreasing HbA1c, TNF-α, and PPARγ2 gene expression and preventing an increase in FFAs.

2.
Asian Pac J Cancer Prev ; 23(3): 985-993, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35345372

ABSTRACT

BACKGROUND: Breast cancer prevention still needs to be improved. Calorie restriction is thought to prevent breast cancer through the induction of autophagy. Maranta arundinacea L. (MA) has the potential for calorie restriction because it contains high fiber. This research aimed to observe the effect of dietary MA against dimethylbenz(a)anthracene (DMBA)-induced mammary cancer in Sprague Dawley rats related to autophagy. METHODS: Twenty-five Sprague Dawley rats were randomly divided into five groups: 1) control group without DMBA-induced with a standard diet, 2) 20 mg/kg BW of DMBA two times a week for five weeks with a standard diet, 3) DMBA and diet modification with 30% of MA, 4) DMBA and diet modification with 45% of MA, and 5) DMBA and diet modification with 60% of MA. Examination of the nodule was conducted once every week for 22 weeks. Breast tissue/tumor examination underwent histology examination with hematoxylin-eosin. Examinations of immunohistochemical staining against Beclin1, LC3B, and SQSTM1 were conducted to reveal autophagy. The difference of autophagy protein expression was analyzed using One way ANOVA with 95% confidence level and significance set as p<0.05. RESULTS: Cancer was detected in four rats of DMBA standard diet, two rats of 30% MA, one rat of 45% MA. No cancer was detected in the rats of control and rats with 60% of MA group. The Beclin1 expressions showed that the 60% of MA group had the highest score (2.5±0.52) followed by the 45% of MA group (1.87±0.49), control group (1.77±0.11), 30% of MA group (1.28±0.75), and DMBA with standard diet had the lowest score (1.28±0.91). The difference of Beclin1 expressions was statistically significant (p-value=0.03). However, the difference of the LC3B expressions (p-value=0.11) and SQSTM1 expressions (p-value=0.225) were not statistically significant. CONCLUSION: Dietary modifications with MA potentially prevent breast cancer and induce initiation of autophagy.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Experimental , Marantaceae , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Animals , Autophagy , Diet , Female , Humans , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/prevention & control , Rats , Rats, Sprague-Dawley
3.
F1000Res ; 8: 1770, 2019.
Article in English | MEDLINE | ID: mdl-32695310

ABSTRACT

Background: Noncontact Electro Capacitive Cancer Therapy (ECCT) is a novel treatment modality in cancer. Chemokine (C-C motif) ligand 2 (CCL2) has a major role in the outgrowth of metastatic breast cancer. Interleukin 18 (IL18) plays a role in macrophage alteration, which leads to excessive angiogenesis. This study aims to elaborate on the association of CCL2, IL18, IL23α, and TNF-α (tumor necrosis factor-alpha) expression with the anti-proliferative effect of ECCT in rat breast tumor tissue.   Methods: Low intensity (18 Vpp) and intermediate frequency (150 kHz) alternating current-electric field (AC-EF) between two capacitive electrodes were exposed as external EF to a rat cage. Twenty-four rats were divided into four groups of six replicates. Breast tumor tissues were collected from 7, 12-dimethylbenz[a]anthracene (DMBA)-induced rats. Two groups were non DMBA-induced rats without ECCT exposure (NINT) and with (NIT). The other two groups were DMBA-induced rats without ECCT exposure (INT) and with (IT). Mammary glands and breast tumor tissues were collected from each group and preserved. Hematoxylin-eosin and immunohistochemistry staining were performed on paraffin sections of tissues using anti-PCNA, anti-ErbB2, anti-Caspase3, and anti-CD68. CCL2, IL18, IL23α, and TNF-α mRNA relative expressions were analyzed using qRT-PCR. Results: ECCT exposure may cause the reduction of PCNA protein expression as well as ErbB2 on breast tumor tissues, but it causes the increase of Caspase3 and macrophage CD68 protein. In rat breast tumor tissues of IT groups, the mRNA expression of CCL2 and IL18 are significantly down-regulated, in contrast with the up-regulated expression of these cytokines in tumor tissues of the INT group. IL23α and TNF- α expression remained similar in both groups. Conclusion: CCL2 and IL18 expressions have an association with the inhibition of breast tumor cell proliferation affected by ECCT exposure.


Subject(s)
Chemokine CCL2/metabolism , Electric Stimulation Therapy , Interleukin-18/metabolism , Mammary Neoplasms, Experimental/therapy , Animals , Cell Proliferation , Female , Interleukin-23 Subunit p19/metabolism , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...