Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38981991

ABSTRACT

[32](1,4)Naphthalenophanes, bearing carbon-bridge chains (syn- and anti-NPs) and nitrogen-bridge chains (syn- and anti-ANPs), were synthesized, and their X-ray structures and photoreactions were investigated. The intramolecular separation distance between the naphthalene cores for ANPs was shorter than that for NPs, suggesting that intramolecular interactions between the naphthalene rings  were more efficient for ANPs compared to NPs. Upon photoirradiation at 300 nm, anti-NP, syn-ANP and anti-ANP produced the corresponding intramolecular [π4s + π4s] cycloadducts, whereas syn-NP gave an unidentified complex product mixture. Quantum yields for the photo-consumption (ΦPC) of NPs and ANPs were evaluated to quantitatively compare their photoreactivity. The ΦPC values of ANPs were approximately two-fold higher than those of ANPs.Noteworthily, the ΦPC value of syn-ANP was estimated to be unity. Based on these results we discuss the effects of the alignments of the naphthalene cores (anti vs. syn) and the bridging elements (C-bridge vs. N-bridge) on the photoreaction efficiencies of [32](1,4)naphthalenophanes.

2.
Sci Rep ; 14(1): 6723, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509168

ABSTRACT

A chemical proteomics approach using Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor-immobilized sepharose (TIM-063-Kinobeads) identified main targets such as CaMKKα/1 and ß/2, and potential off-target kinases, including AP2-associated protein kinase 1 (AAK1), as TIM-063 interactants. Because TIM-063 interacted with the AAK1 catalytic domain and inhibited its enzymatic activity moderately (IC50 = 8.51 µM), we attempted to identify potential AAK1 inhibitors from TIM-063-derivatives and found a novel AAK1 inhibitor, TIM-098a (11-amino-2-hydroxy-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one) which is more potent (IC50 = 0.24 µM) than TIM-063 without any inhibitory activity against CaMKK isoforms and a relative AAK1-selectivity among the Numb-associated kinases family. TIM-098a could inhibit AAK1 activity in transfected cultured cells (IC50 = 0.87 µM), indicating cell-membrane permeability of the compound. Overexpression of AAK1 in HeLa cells significantly reduced the number of early endosomes, which was blocked by treatment with 10 µM TIM-098a. These results indicate TIM-063-Kinobeads-based chemical proteomics is efficient for identifying off-target kinases and re-evaluating the kinase inhibitor (TIM-063), leading to the successful development of a novel inhibitory compound (TIM-098a) for AAK1, which could be a molecular probe for AAK1. TIM-098a may be a promising lead compound for a more potent, selective and therapeutically useful AAK1 inhibitor.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Humans , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , HeLa Cells , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Phosphorylation
3.
Chem Pharm Bull (Tokyo) ; 71(4): 282-288, 2023.
Article in English | MEDLINE | ID: mdl-37005253

ABSTRACT

Retinoid X receptor (RXR) agonist NEt-3IB (1) is a candidate for the treatment of inflammatory bowel disease (IBD), and we have established a process synthesis of 1 in which the final product is obtained by recrystallization from 70% EtOH. However, we found that there are two crystal forms of 1. Here, to characterize and clarify the relationship between them, we conducted thermogravimetry, powder X-ray diffraction, and single crystal X-ray diffraction. The crystal forms were identified as the monohydrate form I and anhydrate form II. The crystal form I, obtained as a stable form by our established synthesis, was easily dehydrated simply by drying to afford the form II', which was similar to the crystal form II obtained by recrystallization from anhydrous EtOH. Storage of the form II' in air regenerated the form I. The molecular conformations of 1 in the crystals of the two forms are similar, and they can be reversibly interconverted. The solubility of the monohydrate form I and anhydrate form II was examined and the former was found to be less soluble than the latter. Thus, form I may be superior to form II for targeting IBD, because of higher delivery to the lower gastrointestinal tract and reduction of systemic side effects associated with lower absorption due to lower water solubility.


Subject(s)
Retinoid X Receptors , X-Ray Diffraction , Crystallography, X-Ray , Solubility , Molecular Conformation , Calorimetry, Differential Scanning
4.
Molecules ; 27(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296383

ABSTRACT

A mixture of 2-pyridine carboxaldehyde, 4-formylimidazole (or 2-methyl-4-formylimidazole), and NiCl2·6H2O in a molar ratio of 2:2:1 was reacted with two equivalents of hydrazine monohydrate in methanol, followed by the addition of aqueous NH4PF6 solution, afforded a NiII complex with two unsymmetric azine-based ligands, [Ni(HLH)2](PF6)2 (1) or [Ni(HLMe)2](PF6)2 (2), in a high yield, where HLH denotes 2-pyridylmethylidenehydrazono-(4-imidazolyl)methane and HLMe is its 2-methyl-4-imidazolyl derivative. The spectroscopic measurements and elemental analysis confirmed the phase purity of the bulk products, and the single-crystal X-ray analysis revealed the molecular and crystal structures of the NiII complexes bearing an unsymmetric HLH or HLMe azines in a tridentate κ3N, N', N" coordination mode. The HLH complex with a methanol solvent, 1·MeOH, crystallizes in the orthorhombic non-centrosymmetric space group P212121 with Z = 4, affording conglomerate crystals, while the HLMe complex, 2·H2O·Et2O, crystallizes in the monoclinic and centrosymmetric space group P21/n with Z = 4. In the crystal of 2·H2O·Et2O, there is intermolecular hydrogen-bonding interaction between the imidazole N-H and the neighboring uncoordinated azine-N atom, forming a one-dimensional polymeric structure, but there is no obvious magnetic interaction among the intra- and interchain paramagnetic NiII ions.


Subject(s)
Methanol , Nickel , Nickel/chemistry , Crystallography, X-Ray , Ligands , Pyridines/chemistry , Azo Compounds , Ions , Imidazoles , Methane , Solvents , Hydrogen
5.
Inorg Chem ; 59(24): 18225-18240, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33249844

ABSTRACT

Several series of platinum(II), palladium(II), and nickel(II) complexes bearing 8-(diphenylphosphino)quinoline (PQH) or its 2-methyl or 2-phenyl derivatives (PQMe or PQPh) were synthesized, and their crystal structures and behaviors in solution were investigated. Most of the complexes [M(PQR)2]X2 (MII = PtII, PdII, or NiII; R = H, Me or Ph; X = monoanionic ions) characterized in this study have an approximately square-planar coordination geometry with two bidentate P,N-chelating or monodentate P-donating quinolylphosphine ligands in the cis(P,P) configuration. A large steric requirement from the Me or Ph substituent introduced at the 2-position of the quinoline ring gives the resulting complexes severe distortion. The PtII and PdII complex cations maintained the square-planar coordination geometry, but the MII center was displaced from the chelating ligand plane. This bending of the chelate coordination makes the M-N(quinoline) bond weaker, as demonstrated by the longer M-N bonds. In accord with the bond weakening, the partial dissociation of the PQH or PQMe chelates by substitution with halide anions were observed using UV-vis spectroscopy and X-ray crystallography. In contrast, the PQPh complexes were stable in solution toward the addition of halide anions; the intramolecular π-π stacking interaction between the coordinating quinolyl and the 2-substituted phenyl rings protects the MII center from nucleophilic attack. In the corresponding NiII complexes, the steric congestion arising from the mutually cis-positioned PQR ligands resulted in a large tetrahedral distortion around the NiII center. However, the intramolecular π-π stacking interaction was still effective in the PQPh complex, and this interaction can explain some unusual robustness and electrochemical properties of the NiII-PQPh complex.

6.
RSC Adv ; 10(71): 43472-43479, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-35519684

ABSTRACT

The correlation between magnetic relaxation dynamics and the alignment of single-ion magnets (SIMs) in a crystal was investigated using four analogous cobalt(ii) complexes with unique hydrogen-bond networks. The hydrogen-bonding interactions in the crystals resulted in a relatively short intermolecular Co⋯Co distance, which led to non-zero intermolecular magnetic coupling. All the complexes with a Co⋯Co distance shorter than 6.5 Å exhibited zero-field slow magnetic relaxation as weak magnetic interactions split the ground ±Ms levels and suppressed quantum tunneling of magnetization (QTM). In particular, antiferromagnetically coupled one-dimensional chain SIM networks effectively suppressed QTM when the two intrachain Co⋯Co distances were non-equivalent. However, when the two distances in a chain were equivalent and each molecular symmetry axis aligned parallell within the chain, QTM suppression was insufficient because magnetic coupling from the adjacent molecules was virtually cancelled. Partial substitution of the CoII ion with the diamagnetic ZnII ion up to 33% for this complex resulted in complete QTM suppression in the absence of an external field. These results show that the manipulation of intermolecular distances and alignments is effective for suppressing undesired QTM events in SIMs.

7.
Dalton Trans ; 48(36): 13622-13629, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31464309

ABSTRACT

Complexation properties of U-shaped ligands, L1 and L2, which are Schiff bases of 5,5'-(9,9-dimethylxanthene-4,5-diyl)bis(salicylaldehyde) (H2xansal) with 3-amino-1-propanol or 2-hydroxybenzylamine, respectively, were investigated to construct polynuclear manganese complexes. In these ligands, two O,N,O-Schiff bases are bridged by a xanthene backbone. The reactions of H4L1 or H4L2 with manganese salts afforded tetra- and dinuclear manganese complexes, including the tetramanganese(ii,ii,iii,iii) complex [Mn4(L1)2(µ-OAc)2] with a Mn4O6 core exhibiting an incomplete double-cubane structure. In the Mn4O6 core, phenolate and alkoxide O atoms bridge the manganese ions. Deprotonated 3-hydroxypropyl groups were crucial to the assembly of four manganese ions because the phenolate-bridged dimanganese(iii,iii) complex [Mn2(H2L1)2]2+ was obtained in the absence of a base, and H4L2, which has 2-hydroxybenzyl groups instead of 3-hydroxypropyl groups in H4L1, afforded the cyclic dimanganese(iv,iv) complex [Mn2(L2)2]. We disclosed that [Mn4(L1)2(µ-OAc)2] was converted to the oxo-bridged tetramanganese(iii,iii,iii,iii) complex [Mn4(L1)(HL1)(µ3-O)(µ-OAc)2]+ by treating with NH4PF6 or NH4BF4: a triply bridging alkoxide was protonated and replaced by an oxide ligand. The cyclic voltammograms of [Mn4(L1)(HL1)(µ3-O)(µ-OAc)2]+ suggested that the reverse reaction forming [Mn4(L1)2(µ-OAc)2] occurred in the electrochemical processes and was assisted by protonation.

8.
Dalton Trans ; 48(2): 395-399, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30523349

ABSTRACT

Three tetracoordinated cobalt(ii) complexes with a series of unsymmetrical bidentate ligands were synthesized and crystallographically characterized. Although their static magnetic properties are similar, their dynamic magnetic properties differ drastically depending indirectly on intermolecular hydrogen-bonding interactions.

9.
Inorg Chem ; 56(3): 1679-1695, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28098445

ABSTRACT

The 1:1 assembly reaction of the racemic form of the cross-linking ligand complex Na[CuIILdpen(1R2R/1S2S)] with LnIII(NO3)3·6H2O gave the centrosymmetric circular (CuIILnIII)2 complex [CuIILdpen(1R2R/1S2S)LnIII(NO3)2]2 (1Ln: Ln = Gd, Tb, Dy), while the reaction of the enantiopure form Na[CuIILdpen(1R2R)] with LnIII(NO3)3·6H2O gave the chiral chainlike (CuIILnIII)1∞ complex [CuIILdpen(1R2R)LnIII(NO3)2(CH3CN)]1∞·CH3CN (2Ln: Ln = Gd, Tb, Dy), where {CuIILdpen(1R2R)}- is (N-((1R,2R)-2-(((E)-3-ethoxy-2-oxybenzylidene)amino)-1,2-diphenylethyl)-2-oxybenzamide)copper(II) and {CuIILdpen(1R2R/1S2S)}- is the racemic mixture of {CuIILdpen(1R2R)}- and {CuIILdpen(1S2S)}-. The copper(II) component functions as a cross-linking ligand complex and bridges two LnIII ions at two phenoxo oxygen atoms and one ethoxy oxygen atom, as well as at an amido oxygen atom. For 1Ln, two binuclear species of [CuIILdpen(1R2R)LnIII(NO3)2] and [CuIILdpen(1S2S)LnIII(NO3)2] with opposite chiralities are linked by two amido oxygen atoms O3 and O3* to form a centrosymmetric circular structure with Gd-Cu = 3.370(1) Å and Gd-Cu* = 5.627(1) Å. For 2Ln, binuclear species with the same chirality are bridged by Gd-O3* = 2.228(5) Å to form a chiral chainlike structure with Gd-Cu = 3.3348(9) Å and Gd-Cu* = 6.2326(9) Å. The bridged angles through the amido group of Gd-O3*═C7* are 133.9(5) and 177.6(4)° for 1Gd and 2Gd, respectively. The magnetic susceptibilities of 1Gd and 2Gd were analyzed by the spin-only Hamiltonian on the basis of the circular tetranuclear (-CuIIGdIII-)2 and linear chainlike (-CuIIGdIII-)1∞ structures, respectively. The CuII-GdIII magnetic interactions through two phenoxo bridges and a three-atom N-C═O bridge, J1 and J2, are both ferromagnetic to be J1 = +4.6 cm-1 and J2 = +1.8 cm-1 for 1Gd and J1 = +4.2 cm-1 and J2 = +0.037 cm-1 for 2Gd. The J2 value of 2Gd is much smaller than that of 1Gd. When the temperature was lowered, 1Ln and 2Ln (Ln = Tb, Dy) showed a decrease in the χMT vs T plot due to crystal field effects on the LnIII ion (Stark splitting) and an increase due to the ferromagnetic CuII-LnIII interaction. The magnetization values of 1Ln and 2Ln (Ln = Tb, Dy) without liquid paraffin are considerably larger than the corresponding values with liquid paraffin, indicating the presence of strong magnetic anisotropy. 1Tb and 1Dy showed frequency dependence of ac magnetic susceptibility under zero external dc magnetic field, showing the behavior of single-molecule magnets (SMMs). 2Tb and 2Dy showed no frequency dependence under a zero external magnetic field but showed a meaningful frequency dependence under an external magnetic field. Their energy barriers, Δ/kB, estimated by the Arrhenius plots are 29.4(6) and 20.6(3) K for 1Tb and 2Tb under dc bias fields of 0 and 1000 Oe, respectively, and those of 1Dy and 2Dy are 13.1(9) K and 16.4(2) K under dc bias fields of 0 and 1000 Oe, respectively.

10.
Dalton Trans ; 44(36): 15757-60, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26270329

ABSTRACT

A reaction of [PdCl2(cod)] (cod = 1,5-cyclooctadiene) and an E/Z mixture of quinoline-2-carbaldehyde (pyridine-2-carbonyl)hydrazone (HL) gave two kinds of Pd(II) mononuclear complexes, [PdCl(Z-L-κ(3)N,N',N'')] (1) and [PdCl2(E-HL'-κ(2)N,N')] (2), where L(-) is the deprotonated hydrazonate anion and HL' is the quinolinium-hydrazonate zwitterionic form of HL. Complex 2 is gradually converted to 1 in solution, and complex 1 is a good precursor to prepare a Pd(II)/Ru(II) heterodinuclear complex bridged by hydrazonate, trans(Cl,Cl)-[RuCl2(PPh3)2(µ-L)PdCl] (3).

11.
Inorg Chem ; 54(15): 7291-300, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26200797

ABSTRACT

Solvent-free spin crossover Fe(II) complex fac-[Fe(II)(HL(n-Pr))3]Cl·PF6 was prepared, where HL(n-Pr) denotes 2-methylimidazol-4-yl-methylideneamino-n-propyl. The magnetic susceptibility measurements at scan rate of 0.5 K min(-1) showed two successive spin transition processes consisting of the first spin transition T1 centered at 122 K (T1↑ = 127.1 K, T1↓ = 115.8 K) and the second spin transition T2 centered at ca. 105 K (T2↑ = 115.8 K, T2↓ = 97.2 K). The magnetic susceptibility measurements at the scan rate of 2.0, 1.0, 0.5, 0.25, and 0.1 K min(-1) showed two scan speed dependent spin transitions, while the Mössbauer spectra detected only the first spin transition T1. The crystal structures were determined at 160, 143, 120, 110, 95 K in the cooling mode, and 110, 120, and 130 K in the warming mode so as to follow the spin transition process of high-spin HS → HS(T1) → HS(T2) → low-spin LS → LS(T2) → LS(T1) → HS. The crystal structures at all temperatures have a triclinic space group P1̅ with Z = 2. The complex-cation has an octahedral N6 coordination geometry with three bidentate ligands and assume a facial-isomer with Δ- and Λ-enantimorphs. Three imidazole groups of fac-[Fe(II)(HL(n-Pr))3](2+) are hydrogen-bonded to three Cl(-) ions. The 3:3 NH(imidazole)···Cl(-) hydrogen-bonds form a stepwise ladder assembly structure, which is maintained during the spin transition process. The spin transition process is related to the structural changes of the FeN6 coordination environment, the order-disorder of PF6(-) anion, and the conformation change of n-propyl groups. The Fe-N bond distance in the HS state is longer by 0.2 Å than that in the LS state. Disorder of PF6(-) anion is not observed in the LS state but in the HS state. The conformational changes of n-propyl groups are found in the spin transition processes except for HS → HS(T1) → HS(T2).

12.
Chem Commun (Camb) ; 51(10): 1889-92, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25530103

ABSTRACT

In the thyminate(2-)-bridged tetranuclear Cp*Rh(III) complexes incorporating a Na(+), Ca(2+) or Ln(3+) cation, homochiral aggregation of four Rh(III) centres was achieved to form metallacalix[4]arene-type clusters. The thyminate(2-) bridged two Rh(III) and the third metal ion with a µ3-1κN(1):2κ(2)N(3),O(2):3κO(2) mode in the Na(+) and Ca(2+) complexes, while in the Ln(3+) analogues it exhibited a different bridging mode, µ3-1κN(1):2κ(2)N(3),O(4):3κO(2).

13.
Inorg Chem ; 53(19): 10359-69, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25203929

ABSTRACT

Terbium(III) and dysprosium(III) complexes with a tripodal N7 ligand containing three imidazoles (H3L) and a bidentate acetate ion (OAc(-)), [Ln(III)(H3L)(OAc)](ClO4)2·MeOH·H2O (Ln = Tb, 1; Ln = Dy, 2), were synthesized and studied, where H3L = tris[2-(((imidazol-4-yl)methylidene)amino)ethyl]amine. The Tb(III) and Dy(III) complexes have an isomorphous structure, and each Tb(III) or Dy(III) ion is coordinated by the tripodal N7 and the bidentate acetate ligands, resulting in a nonacoordinated capped-square-antiprismatic geometry. The magnetic data, including temperature dependence of the magnetic susceptibilities and field dependence of the magnetization, were analyzed by a spin Hamiltonian, including the crystal field effect on the Tb(III) ion (4f(8), J = 6, S = 3, L = 3, g(J) = 3/2, (7)F6) and the Dy(III) ion (4f(9), J = 15/2, S = 5/2, L = 5, g(J) = 4/3, (6)H(15/2)). The Stark splittings of the ground states (7)F6 of the Tb(III) ion and (6)H(15/2) of the Dy(III) ion were evaluated from the magnetic analyses, and the energy diagram patterns indicated an easy axis (Ising type) anisotropy for both complexes, which is more pronounced for 2. The solid-state emission spectra of both complexes displayed sharp bands corresponding to the f-f transitions, and the fine structures assignable to the (5)D4 → (7)F6 transition for 1 and the (6)F(9/2) → (6)H(15/2) transition for 2 were related to the energy diagram patterns from the magnetic analyses. 1 and 2 showed an out-of-phase signal with frequency dependence in alternating current (ac) susceptibility under a dc bias field of 1000 Oe, indicative of a field-induced SIM.


Subject(s)
Acetates/chemistry , Dysprosium/chemistry , Imidazoles/chemistry , Luminescence , Organometallic Compounds/chemistry , Terbium/chemistry , Crystallography, X-Ray , Ligands , Magnetic Phenomena , Models, Molecular , Organometallic Compounds/chemical synthesis , Quantum Theory
14.
Inorg Chem ; 53(12): 5961-71, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24892984

ABSTRACT

Two Tb(III) complexes with the same N6O3 donor atoms but different coordination geometries, "fac"-[Tb(III)(HL(DL-ala))3]·7H2O (1) and "mer"-[Tb(III)(HL(DL-phe))3]·7H2O (2), were synthesized, where H2L(DL-ala) and H2L(DL-phe) are N-[(imidazol-4-yl)methylidene]-DL-alanine and -DL-phenylalanine, respectively. Each Tb(III) ion is coordinated by three electronically mononegative NNO tridentate ligands to form a coordination geometry of a tricapped trigonal prism. Compound 1 consists of enantiomers "fac"-[Tb(III)(HL(D-ala))3] and "fac"-[Tb(III)(HL(L-ala))3], while 2 consists of "mer"-[Tb(III)(HL(D-phe))2(HL(L-phe))] and "mer"-[Tb(III)(HL(D-phe))(HL(L-phe))2]. Magnetic data were analyzed by a spin Hamiltonian including the crystal field effect on the Tb(III) ion (4f(8), J = 6, S = 3, L = 3, gJ = 3/2, (7)F6). The Stark splitting of the ground state (7)F6 was evaluated from magnetic analysis, and the energy diagram pattern indicated easy-plane and easy-axis (Ising type) magnetic anisotropies for 1 and 2, respectively. Highly efficient luminescences with Φ = 0.50 and 0.61 for 1 and 2, respectively, were observed, and the luminescence fine structure due to the (5)D4 → (7)F6 transition is in good accordance with the energy diagram determined from magnetic analysis. The energy diagram of 1 shows an approximate single-well potential curve, whereas that of 2 shows a double- or quadruple-well potential within the (7)F6 multiplets. Complex 2 displayed an onset of the out-of-phase signal in alternating current (ac) susceptibility at a direct current bias field of 1000 Oe on cooling down to 1.9 K. A slight frequency dependence was recorded around 2 K. On the other hand, 1 did not show any meaningful out-of-phase ac susceptibility. Pulsed-field magnetizations of 1 and 2 were measured below 1.6 K, and only 2 exhibited magnetic hysteresis. This finding agrees well with the energy diagram pattern from crystal field calculation on 1 and 2. DFT calculation allowed us to estimate the negative charge distribution around the Tb(III) ion, giving a rationale to the different magnetic anisotropies of 1 and 2.

15.
Inorg Chem ; 53(4): 2254-9, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24498902

ABSTRACT

The solvent-free spin crossover iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine), exhibiting thermal hysteresis, was synthesized and characterized. The Fe(III) ion has an octahedral coordination geometry, with N2O2 donor atoms of the planar tetradentate ligand (hapen) and two nitrogen atoms of two imidazoles at the axial positions. One of two imidazoles is hydrogen-bonded to the phenoxo oxygen atom of hapen of the adjacent unit to give a hydrogen-bonded one-dimensional chain, while the other imidazole group is free from hydrogen bonding. The temperature dependencies of the magnetic susceptibilities and Mössbauer spectra revealed an abrupt spin transition between the high-spin (S = 5/2) and low-spin (S = 1/2) states, with thermal hysteresis.

16.
Inorg Chem ; 52(21): 12828-41, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24151881

ABSTRACT

Carbonato-bridged Zn(II)2Ln(III)2 complexes [(µ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-µ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)SGd1·SGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those of Zn(II)2Dy(III)2 were not detected. The fine structure assignable to the (5)D4 → (7)F6 transition of ZnTb1 and ZnTb2 is in good accord with the energy pattern from the magnetic analysis. The Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) showed an out-of-phase signal with frequency-dependence in alternating current susceptibility, indicative of single molecule magnet. Under a dc bias field of 1000 Oe, the signals become significantly more intense and the energy barrier, Δ/kB, for the magnetic relaxation was estimated from the Arrhenius plot to be 39(1) and 42(8) K for ZnTb1 and ZnTb2, and 52(2) and 67(2) K for ZnDy1 and ZnDy2, respectively.


Subject(s)
Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Zinc/chemistry , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Luminescence , Magnetics , Molecular Structure , Organometallic Compounds/chemical synthesis
17.
Dalton Trans ; 42(40): 14556-67, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-23979820

ABSTRACT

Several new iridium(III) and rhodium(III) complexes bearing 5-methyltetrazolate (MeCN4(-)) have been prepared, and their structures in the crystals and in solution have been determined by X-ray analysis and by NMR spectroscopy, respectively. In the crystals of the mononuclear complexes, κN(2)-coordination of MeCN4(-) was observed when the ancillary ligand was 2,2'-bipyridine (bpy): [Cp*M(bpy)(MeCN4-κN(2))]PF6 (Cp* = η(5)-C5Me5; M = Ir: 1 and Rh: 2), while the corresponding complexes with 2-(2'-pyridyl)phenyl (ppy(-)) were confirmed to have the κN(1)-coordination of MeCN4(-): [Cp*M(ppy)(MeCN4-κN(1))] (M = Ir: 3 and Rh: 4). In solution, the Ir(III) complexes (1 and 3) were robust enough to maintain their molecular structures, but the Rh(III) complexes (2 and 4) existed as an equilibrium mixture of the κN(1)- and κN(2)-isomers. In addition to the Ir(III)-Ir(III) and Rh(III)-Rh(III) homodinuclear complexes bridged by MeCN4(-) (5-8), the corresponding heterodinuclear Ir(III)-Rh(III) complexes (9-12) were prepared using the mononuclear Ir(III) complexes (1 and 3) as precursors. The molecular structures of these dinuclear complexes were also characterised. Interestingly, both of the heterodinuclear complexes comprised of Cp*M(bpy)(2+) and Cp*M'(ppy)(+) fragments, [Cp*M(bpy)(µ-MeCN4)M'(ppy)Cp*](PF6)2 (M = Ir, M' = Rh: 10 and M = Rh, M' = Ir: 11), exhibited selective crystallisation of a specific µ-κN(1)(M'-ppy):κN(3)(M-bpy) isomer. In solution, the dinuclear complexes with a Rh-N(MeCN4) bond and more than one positive charge (6 and 9-11) showed a dissociation equilibrium, while monocationic MeCN4-bridged complexes (7, 8 and 12) were inactive for dissociation. Furthermore, the heterodinuclear complexes of 9-12, as well as the Rh(III)-Rh(III) complex of 8, exhibited a bridging isomerisation, which would proceed via a η(2):η(2)-intermediate without dissociation of Cp*M(bpy or ppy) fragments.

18.
Inorg Chem ; 52(17): 10183-90, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23967872

ABSTRACT

New ruthenium(II or III) complexes with general formula [Ru(O-N)(bpy)2](n+) (O-N = unsymmetrical bidentate phenolate ligand; bpy = 2,2'-bipyridine) were synthesized, and their crystal structures and electrochemical properties were characterized. Ru(II) complexes with 2-(2-imidazolinyl)phenolate (Himn(-)) or 2-(1,4,5,6-tetrahydropyrimidin-2-yl)phenolate (Hthp(-)) could be deprotonated by addition of excess KO(t)Bu, although the deprotonated species were easily reprotonated by exposure to air. Unlike these Ru(II) complexes, their Ru(III) analogs showed interesting ligand oxidation reactions upon addition of bases. With [Ru(III)(Himn)(bpy)2](2+), two-electron oxidation of Himn(-) and reduction of the Ru(III) center resulted in conversion of the 2-imidazolinyl group to a 2-imidazolyl group. On the other hand, the corresponding Hthp(-) complex exhibited four-electron oxidation of the ligand to form 2-(2-pyrimidyl)phenolate (pym(-)). These aromatization reactions of imidazolinyl and 1,4,5,6-tetrahydropyrimidyl groups were also achieved by the electrochemically generated Ru(III) complexes.

19.
Inorg Chem ; 52(10): 6160-78, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23646986

ABSTRACT

A series of 3d-4f binuclear complexes, [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (x = 0 for M = Cu(II), Zn(II); x = 1 for M = Co(II), Ni(II); Ln = Gd(III), Tb(III), Dy(III), La(III)), have been synthesized and characterized, where 3-MeOsaltn, ac, and hfac denote N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, acetato, and hexafluoroacetylacetonato, respectively. The X-ray analyses demonstrated that all the complexes have an acetato- and diphenolato-bridged M(II)-Ln(III) binuclear structure. The Cu(II)-Ln(III) and Zn(II)-Ln(III) complexes are crystallized in an isomorphous triclinic space group P1, where the Cu(II) or Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of 3-MeOsaltn at the equatorial coordination sites and one oxygen atom of the bridging acetato ion at the axial site. The Co(II)-Ln(III) and Ni(II)-Ln(III) complexes are crystallized in an isomorphous monoclinic space group P2(1)/c, where the Co(II) or Ni(II) ion at the high-spin state has an octahedral coordination environment with N2O2 donor atoms of 3-MeOsaltn at the equatorial sites, and one oxygen atom of the bridged acetato and a methanol oxygen atom at the two axial sites. Each Ln(III) ion for all the complexes is coordinated by four oxygen atoms of two phenolato and two methoxy oxygen atoms of "ligand-complex" M(3-MeOsaltn), four oxygen atoms of two hfac(-), and one oxygen atom of the bridging acetato ion; thus, the coordination number is nine. The temperature dependent magnetic susceptibilities from 1.9 to 300 K and the field-dependent magnetization up to 5 T at 1.9 K were measured. Due to the important orbital contributions of the Ln(III) (Tb(III), Dy(III)) and to a lesser extent the M(II) (Ni(II), Co(II)) components, the magnetic interaction between M(II) and Ln(III) ions were investigated by an empirical approach based on a comparison of the magnetic properties of the M(II)-Ln(III), Zn(II)-Ln(III), and M(II)-La(III) complexes. The differences of χ(M)T and M(H) values for the M(II)-Ln(III), Zn(II)-Ln(III) and those for the M(II)-La(III) complexes, that is, Δ(T) = (χ(M)T)(MLn) - (χ(M)T)(ZnLn) - (χ(M)T)(MLa) = J(MLn)(T) and Δ(H) = M(MLn)(H) - M(ZnLn)(H) - M(MLa)(H) = J(MLn)(H), give the information of 3d-4f magnetic interaction. The magnetic interactions are ferromagnetic if M(II) = (Cu(II), Ni(II), and Co(II)) and Ln = (Gd(III), Tb(III), and Dy(III)). The magnitudes of the ferromagnetic interaction, J(MLn)(T) and J(MLn)(H), are in the order Cu(II)-Gd(III) > Cu(II)-Dy(III) > Cu(II)-Tb(III), while those are in the order of M(II)-Gd(III) ≈ M(II)-Tb(III) > M(II)-Dy(III) for M(II) = Ni(II) and Co(II). Alternating current (ac) susceptibility measurements demonstrated that the Ni(II)-Tb(III) and Co(II)-Tb(III) complexes showed out-of-phase signal with frequency-dependence and the Ni(II)-Dy(III) and Co(II)-Dy(III) complexes showed small frequency-dependence. The energy barrier for the spin flipping was estimated from the Arrhenius plot to be 14.9(6) and 17.0(4) K for the Ni(II)-Tb(III) and Co(II)-Tb(III) complexes, respectively, under a dc bias field of 1000 Oe.


Subject(s)
Acetates/chemistry , Coordination Complexes/chemistry , Lanthanoid Series Elements/chemistry , Metals, Heavy/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Phenols/chemistry , Crystallography, X-Ray , Magnetic Fields , Models, Molecular , Molecular Structure
20.
Inorg Chem ; 52(12): 7218-29, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23706096

ABSTRACT

Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)2]·2.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(µ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(µ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}2]·2CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-µ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (µ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius plot to be 12.2(7) and 6.1(3) K for 1Tb and 2Tb, respectively, and 18.1(6) and 14.5(4) K for 1Dy and 2Dy, respectively, under a dc bias field of 1000 Oe. Compound 1Dy showed relatively slow relaxation of magnetization reorientation even at zero dc applied field with Δ/kB = 6.6(4) K.


Subject(s)
Carbon Dioxide/chemistry , Gadolinium/chemistry , Lanthanoid Series Elements/chemistry , Magnetics , Nickel/chemistry , Benzylidene Compounds/chemistry , Coordination Complexes/chemistry , Methanol/chemistry , Models, Molecular , Propane/chemistry , Solvents , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...