Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Brain ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39197036

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motor neurons, with a typical lifespan of 3-5 years. Altered metabolism is a key feature of ALS that strongly influences prognosis, with an increase in whole-body energy expenditure and changes in skeletal muscle metabolism, including greater reliance on fat oxidation. Dyslipidemia has been described in ALS as part of the metabolic dysregulation, but its role in the pathophysiology of the disease remains controversial. Among the lipids, cholesterol is of particular interest as a vital component of cell membranes, playing a key role in signal transduction and mitochondrial function in muscle. The aim of this study was to investigate whether motor dysfunction in ALS might be associated with dysregulation of muscle cholesterol metabolism. We determined cholesterol content and analyzed the expression of key determinants of the cholesterol metabolism pathway in muscle biopsies from thirteen ALS patients and ten asymptomatic ALS-mutation gene carriers compared to sixteen controls. Using human control primary myotubes, we further investigated the potential contribution of cholesterol dyshomeostasis to reliance on mitochondrial fatty acid. We found that cholesterol accumulates in the skeletal muscle of ALS patients and that cholesterol overload significantly correlates with disease severity evaluated by the Revised ALS Functional Rating Scale. These defects are associated with overexpression of the genes of the lysosomal cholesterol transporters Niemann-Pick type C1 (NPC1) and 2 (NPC2), which are required for cholesterol transfer from late endosomes/lysosomes to cellular membranes. Most notably, a significant increase in NPC2 mRNA levels could be detected in muscle samples from asymptomatic ALS-mutation carriers, long before disease onset. We found that filipin-stained unesterified cholesterol accumulated in the lysosomal compartment in ALS muscle samples, suggesting dysfunction of the NPC1/2 system. Accordingly, we report here that experimental NPC1 inhibition or lysosomal pH alteration in human primary myotubes was sufficient to induce the overexpression of NPC1 and NPC2 mRNA. Finally, acute NPC1 inhibition in human control myotubes induced a shift towards a preferential use of fatty acids, thus reproducing the metabolic defect characteristic of ALS muscle. We conclude that cholesterol homeostasis is dysregulated in ALS muscle from the presymptomatic stage. Targeting NPC1/2 dysfunction may be a new therapeutic strategy for ALS to restore muscle energy metabolism and slow motor symptom progression.

2.
Cell Metab ; 35(12): 2136-2152.e9, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37989315

ABSTRACT

The peripheral nervous system harbors a remarkable potential to regenerate after acute nerve trauma. Full functional recovery, however, is rare and critically depends on peripheral nerve Schwann cells that orchestrate breakdown and resynthesis of myelin and, at the same time, support axonal regrowth. How Schwann cells meet the high metabolic demand required for nerve repair remains poorly understood. We here report that nerve injury induces adipocyte to glial signaling and identify the adipokine leptin as an upstream regulator of glial metabolic adaptation in regeneration. Signal integration by leptin receptors in Schwann cells ensures efficient peripheral nerve repair by adjusting injury-specific catabolic processes in regenerating nerves, including myelin autophagy and mitochondrial respiration. Our findings propose a model according to which acute nerve injury triggers a therapeutically targetable intercellular crosstalk that modulates glial metabolism to provide sufficient energy for successful nerve repair.


Subject(s)
Myelin Sheath , Peripheral Nerves , Myelin Sheath/metabolism , Neuroglia , Schwann Cells/metabolism , Nerve Regeneration/physiology
3.
Neuropathol Appl Neurobiol ; 48(5): e12816, 2022 08.
Article in English | MEDLINE | ID: mdl-35338505

ABSTRACT

AIM: Spinal muscular atrophy (SMA) is a neuromuscular disease caused by survival of motor neuron (SMN) deficiency that induces motor neuron (MN) degeneration and severe muscular atrophy. Gene therapies that increase SMN have proven their efficacy but not for all patients. Here, we explored the unfolded protein response (UPR) status in SMA pathology and explored whether UPR modulation could be beneficial for SMA patients. METHODS: We analysed the expression and activation of key UPR proteins by RT-qPCR and by western blots in SMA patient iPSC-derived MNs and one SMA cell line in which SMN expression was re-established (rescue). We complemented this approach by using myoblast and fibroblast SMA patient cells and SMA mouse models of varying severities. Finally, we tested in vitro and in vivo the effect of IRE1α/XBP1 pathway restoration on SMN expression and subsequent neuroprotection. RESULTS: We report that the IRE1α/XBP1 branch of the unfolded protein response is disrupted in SMA, with a depletion of XBP1s irrespective of IRE1α activation pattern. The overexpression of XBP1s in SMA fibroblasts proved to transcriptionally enhance SMN expression. Importantly, rebalancing XBP1s expression in severe SMA-like mice, induced SMN expression and spinal MN protection. CONCLUSIONS: We have identified XBP1s depletion as a contributing factor in SMA pathogenesis, and the modulation of this transcription factor proves to be a plausible therapeutic avenue in the context of pharmacological interventions for patients.


Subject(s)
Activating Transcription Factor 6 , Endoribonucleases , Muscular Atrophy, Spinal , Protein Serine-Threonine Kinases , Survival of Motor Neuron 1 Protein , X-Box Binding Protein 1 , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Animals , Cell Line , Disease Models, Animal , Endoribonucleases/genetics , Endoribonucleases/metabolism , Humans , Mice , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
4.
PLoS Comput Biol ; 18(2): e1009868, 2022 02.
Article in English | MEDLINE | ID: mdl-35226660

ABSTRACT

Assessment of differential gene expression by qPCR is heavily influenced by the choice of reference genes. Although numerous statistical approaches have been proposed to determine the best reference genes, they can give rise to conflicting results depending on experimental conditions. Hence, recent studies propose the use of RNA-Seq to identify stable genes followed by the application of different statistical approaches to determine the best set of reference genes for qPCR data normalization. In this study, however, we demonstrate that the statistical approach to determine the best reference genes from commonly used conventional candidates is more important than the preselection of 'stable' candidates from RNA-Seq data. Using a qPCR data normalization workflow that we have previously established; we show that qPCR data normalization using conventional reference genes render the same results as stable reference genes selected from RNA-Seq data. We validated these observations in two distinct cross-sectional experimental conditions involving human iPSC derived microglial cells and mouse sciatic nerves. These results taken together show that given a robust statistical approach for reference gene selection, stable genes selected from RNA-Seq data do not offer any significant advantage over commonly used reference genes for normalizing qPCR assays.


Subject(s)
Gene Expression Profiling , Animals , Cross-Sectional Studies , Mice , RNA-Seq , Real-Time Polymerase Chain Reaction , Exome Sequencing
5.
Front Cell Neurosci ; 15: 590537, 2021.
Article in English | MEDLINE | ID: mdl-34093128

ABSTRACT

Embryonic Dissociated Dorsal Root Ganglia (DRG) cultures are often used to investigate the role of novel molecular pathways or drugs in Schwann cell development and myelination. These cultures largely recapitulate the order of cellular and molecular events that occur in Schwann cells of embryonic nerves. However, the timing of Schwann cell developmental transitions, notably the transition from Schwann Cell Precursors (SCP) to immature Schwann cells (iSC) and then to myelinating Schwann cells, has not been estimated so far in this culture system. In this study, we determined the expression profiles of Schwann cell developmental genes during the first week of culture and then compared our data to the expression profiles of these genes in developing spinal nerves. This helped in identifying that SCP transition into iSC between the 5th and 7th day in vitro. Furthermore, we also investigated the transition of immature cells into pro-myelinating and myelinating Schwann cells upon the induction of myelination in vitro. Our results suggest that Schwann cell differentiation beyond the immature stage can be observed as early as 4 days post the induction of myelination in cocultures. Finally, we compared the myelinating potential of coculture-derived Schwann cell monocultures to cultures established from neonatal sciatic nerves and found that both these culture systems exhibit similar myelinating phenotypes. In effect, our results allow for a better understanding and interpretation of coculture experiments especially in studies that aim to elucidate the role of a novel actor in Schwann cell development and myelination.

6.
Int J Mol Sci ; 20(17)2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31461876

ABSTRACT

Recent research in the last decade has sought to explore the role and therapeutic potential of Liver X Receptors (LXRs) in the physiology and pathologies of the Peripheral Nervous System. LXRs have been shown to be important in maintaining the redox homeostasis in peripheral nerves for proper myelination, and they regulate ER stress in sensory neurons. Furthermore, LXR stimulation has a positive impact on abrogating the effects of diabetic peripheral neuropathy and obesity-induced allodynia in the Peripheral Nervous System (PNS). This review details these findings and addresses certain important questions that are yet to be answered. The potential roles of LXRs in different cells of the PNS are speculated based on existing knowledge. The review also aims to provide important perspectives for further research in elucidating the role of LXRs and assessing the potential of LXR based therapies to combat pathologies of the Peripheral Nervous System.


Subject(s)
Ganglia, Sensory/metabolism , Hyperalgesia/metabolism , Liver X Receptors/metabolism , Obesity/complications , Ganglia, Sensory/physiology , Ganglia, Sensory/physiopathology , Humans , Hyperalgesia/etiology , Hyperalgesia/physiopathology , Liver X Receptors/genetics , Oxysterols/metabolism , Schwann Cells/metabolism , Schwann Cells/physiology
7.
PLoS One ; 14(7): e0219440, 2019.
Article in English | MEDLINE | ID: mdl-31335863

ABSTRACT

Multiple statistical approaches have been proposed to validate reference genes in qPCR assays. However, conflicting results from these statistical methods pose a major hurdle in the choice of the best reference genes. Recent studies have proposed the use of at least three different methods but there is no consensus on how to interpret conflicting results. Researchers resort to averaging the stability ranks assessed by different approaches or attributing a weighted rank to candidate genes. However, we report here that the suitability of these validation methods can be influenced by the experimental setting. Therefore, averaging the ranks can lead to suboptimal assessment of stable reference genes if the method used is not suitable for analysis. As the respective approaches of these statistical methods are different, a clear understanding of the fundamental assumptions and the parameters that influence the calculation of reference gene stability is necessary. In this study, the stability of 10 candidate reference genes (Actb, Gapdh, Tbp, Sdha, Pgk1, Ppia, Rpl13a, Hsp60, Mrpl10, Rps26) was assessed using four common statistical approaches (GeNorm, NormFinder, Coefficient of Variation or CV analysis and Pairwise ΔCt method) in a longitudinal experimental setting. We used the development of the cerebellum and the spinal cord of mice as a model to assess the suitability of these statistical methods for reference gene validation. GeNorm and the Pairwise ΔCt were found to be ill suited due to a fundamental assumption in their stability calculations. Highly correlated genes were given better stability ranks despite significant overall variation. NormFinder fares better but the presence of highly variable genes influences the ranking of all genes because of the algorithm's construct. CV analysis estimates overall variation, but it fails to consider variation across groups. We thus highlight the assumptions and potential pitfalls of each method using our longitudinal data. Based on our results, we have devised a workflow combining NormFinder, CV analysis along with visual representation of mRNA fold changes and one-way ANOVA for validating reference genes in longitudinal studies. This workflow proves to be more robust than any of these methods used individually.


Subject(s)
Genes , Statistics as Topic , Algorithms , Animals , Gene Expression Profiling , Longitudinal Studies , Mice, Inbred C57BL , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reference Standards , Reproducibility of Results
8.
Sci Rep ; 8(1): 2524, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29410501

ABSTRACT

Reactive oxygen species (ROS) modify proteins and lipids leading to deleterious outcomes. Thus, maintaining their homeostatic levels is vital. This study highlights the endogenous role of LXRs (LXRα and ß) in the regulation of oxidative stress in peripheral nerves. We report that the genetic ablation of both LXR isoforms in mice (LXRdKO) provokes significant locomotor defects correlated with enhanced anion superoxide production, lipid oxidization and protein carbonylation in the sciatic nerves despite the activation of Nrf2-dependant antioxidant response. Interestingly, the reactive oxygen species scavenger N-acetylcysteine counteracts behavioral, electrophysical, ultrastructural and biochemical alterations in LXRdKO mice. Furthermore, Schwann cells in culture pretreated with LXR agonist, TO901317, exhibit improved defenses against oxidative stress generated by tert-butyl hydroperoxide, implying that LXRs play an important role in maintaining the redox homeostasis in the peripheral nervous system. Thus, LXR activation could be a promising strategy to protect from alteration of peripheral myelin resulting from a disturbance of redox homeostasis in Schwann cell.


Subject(s)
Homeostasis , Liver X Receptors/physiology , Myelin Sheath/metabolism , Oxidative Stress , Schwann Cells , Sciatic Nerve , Animals , Cell Line , Hydrocarbons, Fluorinated/chemistry , Lipid Metabolism , Liver X Receptors/antagonists & inhibitors , Liver X Receptors/genetics , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Protein Carbonylation , Reactive Oxygen Species/metabolism , Schwann Cells/cytology , Schwann Cells/metabolism , Sciatic Nerve/cytology , Sciatic Nerve/metabolism , Sulfonamides/chemistry , tert-Butylhydroperoxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL