Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Life (Basel) ; 13(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37763336

ABSTRACT

INTRODUCTION: Metabolic syndrome amplifies the risk of gestational diabetes, preeclampsia, and preterm labor in pregnant women. Similarly, women with substance use disorder have worsened obstetric and birth outcomes. Despite these two conditions being major healthcare disparities in Appalachia, the health outcomes of this cohort have not been studied thus far. This study looks at the health outcomes of this cohort. METHOD AND RESULTS: In this retrospective cohort study, we analyzed 27,955 mothers who delivered at Cabell Huntington Hospital between January 2010 and November 2021. We implemented Chi-square tests to determine the associations and multiple logistic regression methods for comparison after controlling for other factors, and found that MetS, together with SUD, significantly increases the risk as well as the number of pregnancy complications such as gestational diabetes (p-value < 0.001), preeclampsia (p-value < 0.001), premature rupture (p-value < 0.001), preterm labor (p-value < 0.001), and newborn disorder (p-value < 0.001) compared to the women who had none or had either MetS or SUD alone. CONCLUSION: Women with both metabolic syndrome and substance abuse had worsened pregnancy and neonatal outcomes compared to women with metabolic syndrome or SUD alone. In conclusion, analysis of all the variables is crucial to strategically planning and implementing health interventions that will positively influence the health outcome of the pregnant woman as well as the child.

2.
Nutrients ; 15(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37049411

ABSTRACT

Chronic alcohol use has been attributed to the development of malnutrition. This is in part due to the inhibitory effect of ethanol on the absorption of vital nutrients, including glucose, amino acids, lipids, water, vitamins, and minerals within the small intestine. Recent advances in research, along with new cutting-edge technologies, have advanced our understanding of the mechanism of ethanol's effect on intestinal nutrient absorption at the brush border membrane (BBM) of the small intestine. However, further studies are needed to delineate how ethanol consumption could have an impact on altered nutrient absorption under various disease conditions. Current research has elucidated the relationship of alcohol consumption on glucose, glutamine, vitamins B1 (thiamine), B2 (riboflavin), B9 (folate), C (ascorbic acid), selenium, iron, and zinc absorption within the small intestine. We conducted systematic computerized searches in PubMed using the following keywords: (1) "Alcohol effects on nutrient transport"; (2) "Alcohol mediated malabsorption of nutrients"; (3) "Alcohol effects on small intestinal nutrient transport"; and (4) "Alcohol mediated malabsorption of nutrients in small intestine". We included the relevant studies in this review. The main objective of this review is to marshal and analyze previously published research articles and discuss, in-depth, the understanding of ethanol's effect in modulating absorption of vital macro and micronutrients in health and disease conditions. This could ultimately provide great insights in the development of new therapeutic strategies to combat malnutrition associated with alcohol consumption.


Subject(s)
Intestinal Absorption , Malnutrition , Humans , Alcohol Drinking/adverse effects , Alcohol Drinking/metabolism , Ethanol/pharmacology , Nutrients , Vitamins/pharmacology , Glucose/pharmacology
3.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35008631

ABSTRACT

Gastrointestinal health is influenced by the functional genes and metabolites generated by the human microbiome. As the volume of current biomedical and translational research indicates, the importance and impact of this ecosystem of microorganisms, especially those comprising the gut microbiome on human health, has become increasingly apparent. Changes to the gut microbiome are associated with inflammatory bowel disease (IBD), which is characterized by persistent intestinal inflammation. Furthermore, the lifetime dietary choices of their host may positively or negatively affect both the gut microbiome and its impact on IBD. As such, "anti-inflammatory" dietary supplements, their impact, and mechanisms in restoring gut microbiota homeostasis during IBD is an area of intensive research. Dietary supplementation may represent an important adjuvant treatment avenue for limiting intestinal inflammation in IBD. Overall, this review addresses the development of the gut microbiome, the significance of the gut microbiome in IBD, and the use of dietary supplements such as vitamin D, fish oil, and resveratrol in the mitigation of IBD-associated gut dysbiosis and intestinal inflammation.


Subject(s)
Dietary Supplements , Fish Oils/therapeutic use , Gastrointestinal Microbiome , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/microbiology , Resveratrol/therapeutic use , Vitamin D/therapeutic use , Animals , Fish Oils/pharmacology , Gastrointestinal Microbiome/drug effects , Humans , Inflammatory Bowel Diseases/pathology , Resveratrol/pharmacology , Vitamin D/pharmacology
4.
FASEB J ; 33(8): 9323-9333, 2019 08.
Article in English | MEDLINE | ID: mdl-31107610

ABSTRACT

During obesity, diabetes and hypertension inevitably coexist and cause innumerable health disparities. In the obesity, diabetes, and hypertension triad (ODHT), deregulation of glucose and NaCl homeostasis, respectively, causes diabetes and hypertension. In the mammalian intestine, glucose is primarily absorbed by Na-glucose cotransport 1 (SGLT1) and coupled NaCl by the dual operation of Na-H exchange 3 (NHE3) and Cl-HCO3 [down-regulated in adenoma (DRA) or putative anion transporter 1 (PAT1)] exchange in the brush border membrane (BBM) of villus cells. The basolateral membrane (BLM) Na/K-ATPase provides the favorable transcellular Na gradient for BBM SGLT1 and NHE3. How these multiple, distinct transport processes may be affected in ODHT is unclear. Here, we show the novel and broad regulation by Na/K-ATPase of glucose and NaCl absorption in ODHT in multiple species (mice, rats, and humans). In vivo, during obesity inhibition of villus-cell BLM, Na/K-ATPase led to compensatory stimulation of BBM SGLT1 and DRA or PAT1, whereas NHE3 was unaffected. Supporting this new cellular adaptive mechanism, direct silencing of BLM Na/K-ATPase in intestinal epithelial cells resulted in selective stimulation of BBM SGLT1 and DRA or PAT1 but not NHE3. These changes will lead to an increase in glucose absorption, maintenance of traditional coupled NaCl absorption, and a de novo increase in NaCl absorption from the novel coupling of stimulated SGLT1 with DRA or PAT1. Thus, these novel observations provide the pathophysiologic basis for the deregulation of glucose and NaCl homeostasis of diabetes and hypertension, respectively, during obesity. These observations may lead to more efficacious treatment for obesity-associated diabetes and hypertension.-Palaniappan, B., Arthur, S., Sundaram, V. L., Butts, M., Sundaram, S., Mani, K., Singh, S., Nepal, N., Sundaram, U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension.


Subject(s)
Glucose/metabolism , Intestines/cytology , Microvilli/metabolism , Obesity/drug therapy , Obesity/metabolism , Sodium Chloride/metabolism , Animals , Blotting, Western , Cell Line , Fluorescent Antibody Technique , Hypertension/drug therapy , Hypertension/metabolism , Intestinal Absorption/physiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male , RNA Interference , Rats , Sodium-Potassium-Exchanging ATPase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL