Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(35): 12993-12997, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37615663

ABSTRACT

In this study, we use nanopore arrays as a platform for detecting and characterizing individual nanoparticles (NPs) in real time. Dark-field imaging of nanopores with dimensions smaller than the wavelength of light occurs under conditions where trans-illumination is blocked, while the scattered light propagates to the far-field, making it possible to identify nanopores. The intensity of scattering increases dramatically during insertion of AgNPs into empty nanopores, owing to their plasmonic properties. Thus, momentary occupation of a nanopore by a AgNP produces intensity transients that can be analyzed to reveal the following characteristics: (1) NP scattering intensity, which scales with the sixth power of the AgNP radius, shows a normal distribution arising from the heterogeneity in NP size, (2) the nanopore residence time of NPs, which was observed to be stochastic with no permselective effects, and (3) the frequency of AgNP capture events on a 21 × 21 nanopore array, which varies linearly with the concentration of the NPs, agreeing with the frequency calculated from theory. The lower limit of detection (LOD) for NPs was 130 fM, indicating that the measurement can be used in applications in which ultrasensitive detection is required. The results presented here provide valuable insights into the dynamics of NP transport into and out of nanopores and highlight the potential of nanopore arrays as powerful, massively parallel tools for nanoparticle characterization and detection.

2.
Cell Rep Phys Sci ; 4(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37469850

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen responsible for a number of healthcare-associated infection. It is currently difficult to assess single cell behaviors of P. aeruginosa that might contribute to acquisition of antibiotic resistance, intercellular communication, biofilm development, or virulence, because mechanistic behavior is inferred from ensemble collections of cells, thus averaging effects over a population. Here, we develop and characterize a device that can capture and trap arrays of single P. aeruginosa cells in individual micropores in order to study their behaviors using spectroelectrochemistry. Focused ion beam milling is used to fabricate an array of micropores in a Au/dielectric/Au/SiO2-containing multilayer substrate, in which individual micropores are formed with dimensions that facilitate the capture of single P. aeruginosa cells in a predominantly vertical orientation. The bottom Au ring is then used as a working electrode to explore the spectroelectrochemical behavior of parallel arrays of individual P. aeruginosa cells. Application of step-potential or swept-potential waveforms produces changes in the fluorescence emission that can be imaged and correlated with applied potential. Arrays of P. aeruginosa cells typically exhibit three characteristic fluorescence behaviors that are sensitive to nutritional stress and applied potential. The device developed here enables the study of parallel collections of single bacterial cells with well-defined orientational order and should facilitate efforts to elucidate methods of bacterial communication and multidrug resistance at the single cell level.

3.
ACS Sens ; 8(1): 270-279, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36547518

ABSTRACT

We report a closed bipolar electrode (CBE)-based sensing platform for the detection of diagnostic metabolites in undiluted whole human blood. The sensor is enabled by electrode chemistry based on: (1) a mixed layer of blood-compatible adsorption-resistant phosphorylcholine (PPC) and phenylbutyric acid (PBA), (2) ferrocene (Fc) redox mediators, and (3) immobilized redox-active enzymes. This scheme is designed to overcome nonspecific protein adsorption and amplify sensing currents in whole human fluids. The scheme also incorporates a diffusing mediator to increase electronic communication between the immobilized redox enzyme and the working electrode. The use of both bound and freely diffusing mediators is synergistic in producing the electrochemical response. The sensor is realized by linking the analyte cell, containing the specific electrode surface architecture, through a CBE to a reporter cell containing the electrochromic reporter, methyl viologen (MV). The colorless-to-purple color change accompanying the 1e- reduction of MV2+ is captured using a smartphone camera. Subsequent red-green-blue analysis is performed on the acquired images to determine cholesterol, glucose, and lactate concentrations in whole blood. The CBE blood metabolite sensor produces a linear color change at clinically relevant concentration ranges for all metabolites with good reproducibility (∼5% or better) and with limits of detection of 79 µM for cholesterol, 59 µM for glucose, and 86 µM for lactate. Finally, metabolite concentration measurements from the CBE blood metabolite sensor are compared with results from commercially available FDA-approved blood cholesterol, glucose, and lactate meters, with an average difference of ∼3.5% across all three metabolites in the ranges studied.


Subject(s)
Biosensing Techniques , Blood Chemical Analysis , Humans , Biosensing Techniques/methods , Electrodes , Enzymes, Immobilized , Glucose , Lactic Acid , Paraquat , Reproducibility of Results , Blood Chemical Analysis/instrumentation
4.
J Phys Chem Lett ; 13(45): 10527-10533, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36342334

ABSTRACT

Localization-based super-resolution imaging techniques have improved the spatial resolution of optical microscopy well below the diffraction limit, yet encoding additional information into super-resolved images, such as anisotropy and orientation, remains a challenge. Here we introduce calcite-assisted localization and kinetics (CLocK) microscopy, a multiparameter super-resolution imaging technique easily integrated into any existing optical microscope setup at low cost and with straightforward analysis. By placing a rotating calcite crystal in the infinity space of an optical microscope, CLocK microscopy provides immediate polarization and orientation information while maintaining the ability to localize an emitter/scatterer with <10 nm resolution. Further, kinetic information an order of magnitude shorter than the integration time of the camera is encoded in the unique point spread function of a CLocK image, allowing for new mechanistic insight into dynamic processes such as single-nanoparticle dissolution and single-molecule surface-enhanced Raman scattering.


Subject(s)
Calcium Carbonate , Microscopy , Kinetics , Spectrum Analysis, Raman , Nanotechnology
5.
Electrochem Sci Adv ; 2(5)2022 Oct.
Article in English | MEDLINE | ID: mdl-36415682

ABSTRACT

Indium-tin oxide (ITO) is used in a variety of applications due to its electrical conductivity and optical transparency. Moreover, ITO coated glass is a common working electrode for spectroelectrochemistry. Thus, the ITO substrates should exhibit well-understood spectroscopic characteristics. Here, we report anomalous potential-dependent luminescence emission from three structurally-dissimilar electrofluorogenic probe on ITO coated glass. The three probes, flavin mononucleotide, resorufin, and Nile blue, show the expected fluorescence modulation between their oxidized, emissive forms and their reduced, non-fluorescent forms at low laser irradiance and/or high concentrations. However, at high irradiance and/or low concentration, the emission intensity increases at reducing potentials, contrary to expectations. In addition, a strong interplay between probe molecule concentration and laser irradiance is observed. We attribute the anomalous behavior to a combination of (1) irradiance-dependent ITO carrier dynamics, and (2) interaction of the fluorescent probe with ITO at reducing potentials resulting in a charge transfer state with altered emission behavior. Thus, the potential- and irradiance-dependent behavior of ITO and the resulting charge transfer state may not only interfere with the observation of potential-dependent fluorescence from redox probes but can completely reverse the polarity of the potential-dependent luminescence, especially at high irradiance and low concentration.

6.
Anal Chem ; 94(9): 3970-3977, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35213143

ABSTRACT

Understanding functional states of individual redox enzymes is important because electron-transfer reactions are fundamental to life, and single-enzyme molecules exhibit molecule-to-molecule heterogeneity in their properties, such as catalytic activity. Zero-mode waveguides (ZMW) constitute a powerful tool for single-molecule studies, enabling investigations of binding reactions up to the micromolar range due to the ability to trap electromagnetic radiation in zeptoliter-scale observation volumes. Here, we report the potential-dependent fluorescence dynamics of single glutathione reductase (GR) molecules using a bimodal electrochemical ZMW (E-ZMW), where a single-ring electrode embedded in each of the nanopores of an E-ZMW array simultaneously serves to control electrochemical potential and to confine optical radiation within the nanopores. Here, the redox state of GR is manipulated using an external potential control of the Au electrode in the presence of a redox mediator, methyl viologen (MV). Redox-state transitions in GR are monitored by correlating electrochemical and spectroscopic signals from freely diffusing MV/GR in 60 zL effective observation volumes at single GR molecule average pore occupancy, ⟨n⟩ ∼ 0.8. Fluorescence intensities decrease (increase) at reducing (oxidizing) potentials for MV due to the MV-mediated control of the GR redox state. The spectroelectrochemical response of GR to the enzyme substrate, i.e., glutathione disulfide (GSSG), shows that GSSG promotes GR oxidation via enzymatic reduction. The capabilities of E-ZMWs to probe spectroelectrochemical phenomena in zL-scale-confined environments show great promise for the study of single-enzyme reactions and can be extended to important technological applications, such as those in molecular diagnostics.


Subject(s)
Glutathione Reductase , Glutathione , Nanotechnology , Single Molecule Imaging , Diffusion , Fluorescence , Glutathione Disulfide , Glutathione Reductase/chemistry , Oxidation-Reduction , Single Molecule Imaging/methods
7.
Anal Bioanal Chem ; 414(4): 1691-1698, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34850244

ABSTRACT

Myxococcus xanthus is a common soil bacterium with a complex life cycle, which is known for production of secondary metabolites. However, little is known about the effects of nutrient availability on M. xanthus metabolite production. In this study, we utilize confocal Raman microscopy (CRM) to examine the spatiotemporal distribution of chemical signatures secreted by M. xanthus and their response to varied nutrient availability. Ten distinct spectral features are observed by CRM from M. xanthus grown on nutrient-rich medium. However, when M. xanthus is constrained to grow under nutrient-limited conditions, by starving it of casitone, it develops fruiting bodies, and the accompanying Raman microspectra are dramatically altered. The reduced metabolic state engendered by the absence of casitone in the medium is associated with reduced, or completely eliminated, features at 1140 cm-1, 1560 cm-1, and 1648 cm-1. In their place, a feature at 1537 cm-1 is observed, this feature being tentatively assigned to a transitional phase important for cellular adaptation to varying environmental conditions. In addition, correlating principal component analysis heat maps with optical images illustrates how fruiting bodies in the center co-exist with motile cells at the colony edge. While the metabolites responsible for these Raman features are not completely identified, three M. xanthus peaks at 1004, 1151, and 1510 cm-1 are consistent with the production of lycopene. Thus, a combination of CRM imaging and PCA enables the spatial mapping of spectral signatures of secreted factors from M. xanthus and their correlation with metabolic conditions.


Subject(s)
Myxococcus xanthus/metabolism , Cell Culture Techniques , Culture Media/chemistry , Culture Media/metabolism , Metabolome , Myxococcus xanthus/chemistry , Myxococcus xanthus/growth & development , Spectrum Analysis, Raman
8.
Analyst ; 147(1): 22-34, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34874024

ABSTRACT

Microbes, such as bacteria, can be described, at one level, as small, self-sustaining chemical factories. Based on the species, strain, and even the environment, bacteria can be useful, neutral or pathogenic to human life, so it is increasingly important that we be able to characterize them at the molecular level with chemical specificity and spatial and temporal resolution in order to understand their behavior. Bacterial metabolism involves a large number of internal and external electron transfer processes, so it is logical that electrochemical techniques have been employed to investigate these bacterial metabolites. In this mini-review, we focus on electrochemical and spectroelectrochemical methods that have been developed and used specifically to chemically characterize bacteria and their behavior. First, we discuss the latest mechanistic insights and current understanding of microbial electron transfer, including both direct and mediated electron transfer. Second, we summarize progress on approaches to spatiotemporal characterization of secreted factors, including both metabolites and signaling molecules, which can be used to discern how natural or external factors can alter metabolic states of bacterial cells and change either their individual or collective behavior. Finally, we address in situ methods of single-cell characterization, which can uncover how heterogeneity in cell behavior is reflected in the behavior and properties of collections of bacteria, e.g. bacterial communities. Recent advances in (spectro)electrochemical characterization of bacteria have yielded important new insights both at the ensemble and the single-entity levels, which are furthering our understanding of bacterial behavior. These insights, in turn, promise to benefit applications ranging from biosensors to the use of bacteria in bacteria-based bioenergy generation and storage.


Subject(s)
Bacteria , Mass Gatherings , Bacteria/genetics , Humans
9.
Anal Chem ; 93(43): 14481-14488, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34661405

ABSTRACT

Pseudomonas aeruginosa produces a number of phenazine metabolites, including pyocyanin (PYO), phenazine-1-carboxamide (PCN), and phenazine-1-carboxylic acid (PCA). Among these, PYO has been most widely studied as a biomarker of P. aeruginosa infection. However, despite its broad-spectrum antibiotic properties and its role as a precursor in the biosynthetic route leading to other secondary phenazines, PCA has attracted less attention, partially due to its relatively low concentration and interference from other highly abundant phenazines. This challenge is addressed here by constructing a hierarchically organized nanostructure consisting of a pH-responsive block copolymer (BCP) membrane with nanopore electrode arrays (NEAs) filled with gold nanoparticles (AuNPs) to separate and detect PCA in bacterial environments. The BCP@NEA strategy is designed such that adjusting the pH of the bacterial medium to 4.5, which is above the pKa of PCA but below the pKa of PYO and PCN, ensures that PCA is negatively charged and can be selectively transported across the BCP membrane. At pH 4.5, only PCA is transported into the AuNP-filled NEAs, while PYO and PCN are blocked. Structural characterization illustrates the rigorous spatial segregation of the AuNPs in the NEA nanopore volume, allowing PCA secreted from P. aeruginosa to be quantitatively determined as a function of incubation time using square-wave voltammetry and surface-enhanced Raman spectroscopy. The strategy proposed in this study can be extended by changing the nature of the hydrophilic block and subsequently applied to detect other redox-active metabolites at a low concentration in complex biological samples and, thus, help understand metabolism in microbial communities.


Subject(s)
Metal Nanoparticles , Nanopores , Electrodes , Gold , Phenazines , Pseudomonas aeruginosa , Pyocyanine
10.
Chem Sci ; 11(40): 10951-10958, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-34123191

ABSTRACT

We present the results of acid-base experiments performed at the single ion (H+ or OH-) limit in ∼6 aL volume nanopores incorporating electrochemical zero-mode waveguides (E-ZMWs). At pH 3 each E-ZMW nanopore contains ca. 3600H+ ions, and application of a negative electrochemical potential to the gold working electrode/optical cladding layer reduces H+ to H2, thereby depleting H+ and increasing the local pH within the nanopore. The change in pH was quantified by tracking the intensity of fluorescein, a pH-responsive fluorophore whose intensity increases with pH. This behavior was translated to the single ion limit by changing the initial pH of the electrolyte solution to pH 6, at which the average pore occupancy 〈n〉pore ∼3.6H+/nanopore. Application of an electrochemical potential sufficiently negative to change the local pH to pH 7 reduces the proton nanopore occupancy to 〈n〉pore ∼0.36H+/nanopore, demonstrating that the approach is sensitive to single H+ manipulations, as evidenced by clear potential-dependent changes in fluorescein emission intensity. In addition, at high overpotential, the observed fluorescence intensity exceeded the value predicted from the fluorescence intensity-pH calibration, an observation attributed to the nucleation of H2 nanobubbles as confirmed both by calculations and the behavior of non-pH responsive Alexa 488 fluorophore. Apart from enhancing fundamental understanding, the approach described here opens the door to applications requiring ultrasensitive ion sensing, based on the optical detection of H+ population at the single ion limit.

11.
J Phys Chem Lett ; 10(6): 1394-1401, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30840464

ABSTRACT

Single-molecule fluorescence microscopy is used to follow dynamic ligand reorganization on the surface of single plasmonic gold nanorods. Fluorescently labeled DNA is attached to gold nanorods via a gold-thiol bond using a low-pH loading method. No fluorescence activity is initially observed from the fluorescent labels on the nanorod surface, which we attribute to a collapsed geometry of DNA on the metal. Upon several minutes of laser illumination, a marked increase in fluorescence activity is observed, suggesting that the ligand shell reorganizes from a collapsed, quenched geometry to an upright, ordered geometry. The ligand reorganization is facilitated by plasmon-mediated photothermal heating, as verified by controls using an external heat source and simulated by coupled optical and heat diffusion modeling. Using super-resolution image reconstruction, we observe spatial variations in which ligand reorganization occurs at the single-particle level. The results suggest the possibility of nonuniform plasmonic heating, which would be hidden with traditional ensemble-averaged measurements.

12.
ACS Nano ; 11(10): 10529-10538, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28968077

ABSTRACT

Controlled three-dimensional positioning of nanoparticles is achieved by delivering single fluorescent nanoparticles from a nanopipette and capturing them at well-defined regions of an electrified substrate. To control the position of single nanoparticles, the force of the pressure-driven flow from the pipette is balanced by the attractive electrostatic force at the substrate, providing a strategy by which nanoparticle trajectories can be manipulated in real time. To visualize nanoparticle motion, a resistive-pulse electrochemical setup is coupled with an optical microscope, and nanoparticle trajectories are tracked in three dimensions using super-resolution fluorescence imaging to obtain positional information with precision in the tens of nanometers. As the particles approach the substrate, the diffusion kinetics are analyzed and reveal either subdiffusive (hindered) or superdiffusive (directed) motion depending on the electric field at the substrate and the pressure-driven flow from the pipette. By balancing the effects of the forces exerted on the particle by the pressure and electric fields, controlled, real-time manipulation of single nanoparticle trajectories is achieved. The developed approach has implications for a variety of applications such as surface patterning and drug delivery using colloidal nanoparticles.


Subject(s)
Drug Delivery Systems , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Optical Imaging , Quartz/chemistry , Diffusion , Electrochemical Techniques , Kinetics , Particle Size , Pressure , Static Electricity , Surface Properties
13.
Chem Rev ; 117(11): 7538-7582, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28084729

ABSTRACT

This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.

14.
Anal Chem ; 89(1): 922-928, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27991761

ABSTRACT

We report a strategy for the optical determination of tip-substrate distance in nanoscale scanning electrochemical microscopy (SECM) using three-dimensional super-resolution fluorescence imaging. A phase mask is placed in the emission path of our dual SECM/optical microscope, generating a double helix point spread function at the image plane, which allows us to measure the height of emitting objects relative to the focus of the microscope. By exciting both a fluorogenic reaction at the nanoscale electrode tip as well as fluorescent nanoparticles at the substrate, we are able to calculate the tip-substrate distance as the tip approaches the surface with precision better than 25 nm. Attachment of a fluorescent particle to the insulating sheath of the SECM tip extends this technique to nonfluorogenic electrochemical reactions. Correlated electrochemical and optical determination of tip-substrate distance yielded excellent agreement between the two techniques. Not only does super-resolution imaging offer a secondary feedback mechanism for measuring the tip-sample gap during SECM experiments, it also enables facile tip alignment and a strategy for accounting for electrode tilt relative to the substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...