Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38543924

ABSTRACT

The adaptation of egg-derived H7N9 candidate vaccine virus (CVV) in the mammalian cell line is an approach to developing a high-growth virus strain for the mass production of vaccine manufacturing. The adaptive mutations that occur in hemagglutinin (HA) are critical to the activity and potency of the vaccine virus. Previously, we identified a new mutation of A169S in the HA protein of an MDCK-adapted H7N9 vaccine virus (A/Anhui/2013, RG268); however, whether and how this mutation affects vaccine potency remain to be investigated. In this study, we serially passaged RG268 in MDCK cells and found that the HA titer and the TCID50 of the passaged virus RG268-M5 were 4-fold (HA units/50 µL) and 3.5-fold (log10 TCID50/mL) higher than those of the original CVV. By inspecting tandem MS spectra, we identified a new glycosylation site at N167 near the receptor binding site of the HA protein of RG268-M5. Flow cytometry results revealed that RG268-M5 could efficiently infect MDCK cells and initiate viral protein replication as well as that of RG268. Though the new glycosylation site is in the antigenic epitope of viral HA protein, the HI assay result indicated that the antigenicity of RG268-M5 was similar to RG268. Additionally, immunizing mice with RG268-M5 mixed aluminum hydroxide could induce potent antibody responses against the homologous and heterologous H7N9 viruses in vitro whereas the titers were comparable with those from the RG268 group. These results provide in-depth structural information regarding the effects of site-specific glycosylation on virus properties, which have implications for novel avian influenza vaccine development.

2.
Vaccine ; 41(21): 3337-3346, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37085450

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have constituted a public health issue with drastic mortality higher than 34%, necessitating the development of an effective vaccine. During MERS-CoV infection, the trimeric spike protein on the viral envelope is primarily responsible for attachment to host cellular receptor, dipeptidyl peptidase 4 (DPP4). With the goal of generating a protein-based prophylactic, we designed a subunit vaccine comprising the recombinant S1 protein with a trimerization motif (S1-Fd) and examined its immunogenicity and protective immune responses in combination with various adjuvants. We found that sera from immunized wild-type and human DPP4 transgenic mice contained S1-specific antibodies that can neutralize MERS-CoV infection in susceptible cells. Vaccination with S1-Fd protein in combination with a saponin-based QS-21 adjuvant provided long-term humoral as well as cellular immunity in mice. Our findings highlight the significance of the trimeric S1 protein in the development of MERS-CoV vaccines and offer a suitable adjuvant, QS-21, to induce robust and prolonged memory T cell response.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Animals , Mice , Humans , Antibodies, Neutralizing , Antibodies, Viral , Dipeptidyl Peptidase 4 , Immunity, Cellular , Mice, Transgenic , Adjuvants, Immunologic , Recombinant Proteins , Vaccines, Subunit , Spike Glycoprotein, Coronavirus
3.
Viruses ; 14(9)2022 08 31.
Article in English | MEDLINE | ID: mdl-36146744

ABSTRACT

Human infections with avian-origin H7N9 influenza A viruses were first reported in China, and an approximately 38% human mortality rate was described across six waves from February 2013 to September 2018. Vaccination is one of the most cost-effective ways to reduce morbidity and mortality during influenza epidemics and pandemics. Egg-based platforms for the production of influenza vaccines are labor-intensive and unable to meet the surging demand during pandemics. Therefore, cell culture-based technology is becoming the alternative strategy for producing influenza vaccines. The current influenza H7N9 vaccine virus (NIBRG-268), a reassortant virus from A/Anhui/1/2013 (H7N9) and egg-adapted A/PR/8/34 (H1N1) viruses, could grow efficiently in embryonated eggs but not mammalian cells. Moreover, a freezing-dry formulation of influenza H7N9 vaccines with long-term stability will be desirable for pandemic preparedness, as the occurrence of influenza H7N9 pandemics is not predictable. In this study, we adapted a serum-free anchorage-independent suspension Madin-Darby Canine Kidney (MDCK) cell line for producing influenza H7N9 vaccines and compared the biochemical characteristics and immunogenicity of three influenza H7N9 vaccine antigens produced using the suspension MDCK cell-based platform without freeze-drying (S-WO-H7N9), the suspension MDCK cell-based platform with freeze-drying (S-W-H7N9) or the egg-based platform with freeze-drying (E-W-H7N9). We demonstrated these three vaccine antigens have comparable biochemical characteristics. In addition, these three vaccine antigens induced robust and comparable neutralizing antibody (NT; geometric mean between 1016 and 4064) and hemagglutinin-inhibition antibody (HI; geometric mean between 640 and 1613) titers in mice. In conclusion, the serum-free suspension MDCK cell-derived freeze-dried influenza H7N9 vaccine is highly immunogenic in mice, and clinical development is warranted.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Animals , Antibodies, Neutralizing , Dogs , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins , Humans , Influenza, Human/prevention & control , Madin Darby Canine Kidney Cells , Mice
4.
Toxins (Basel) ; 14(5)2022 05 10.
Article in English | MEDLINE | ID: mdl-35622581

ABSTRACT

Envenoming by cobras (Naja spp.) often results in extensive local tissue necrosis when optimal treatment with antivenom is not available. This study investigated the cytotoxicity of venoms and purified cytotoxins from the Monocled Cobra (Naja kaouthia), Taiwan Cobra (Naja atra), and Equatorial Spitting Cobra (Naja sumatrana) in a mouse fibroblast cell line, followed by neutralization of the cytotoxicity by three regional antivenoms: the Thai Naja kaouthia monovalent antivenom (NkMAV), Vietnamese snake antivenom (SAV) and Taiwanese Neuro bivalent antivenom (NBAV). The cytotoxins of N. atra (NA-CTX) and N. sumatrana (NS-CTX) were identified as P-type cytotoxins, whereas that of N. kaouthia (NK-CTX) is S-type. All venoms and purified cytotoxins demonstrated varying concentration-dependent cytotoxicity in the following trend: highest for N. atra, followed by N. sumatrana and N. kaouthia. The antivenoms moderately neutralized the cytotoxicity of N. kaouthia venom but were weak against N. atra and N. sumatrana venom cytotoxicity. The neutralization potencies of the antivenoms against the cytotoxins were varied and generally low across NA-CTX, NS-CTX, and NK-CTX, possibly attributed to limited antigenicity of CTXs and/or different formulation of antivenom products. The study underscores the need for antivenom improvement and/or new therapies in treating local tissue toxicity caused by cobra envenomings.


Subject(s)
Antivenins , Naja naja , Animals , Antivenins/pharmacology , Cytotoxins/toxicity , Elapid Venoms/toxicity , Elapidae , Mice , Naja , Taiwan , Thailand , Vietnam
5.
Toxins (Basel) ; 14(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35202149

ABSTRACT

The cobra (genus Naja (N.)) is one of the most common venomous snakes. Due to its frequency and deadly complications of muscle paralysis, local necrosis, and chronic musculoskeletal disability, it should not be ignored. The pathology of devastating tissue destruction, even though specific antivenoms exist, is not fully clear. Here, we attempted to dig in envenomed tissues to study the clinical toxicology of cobra venom. Four cases of N. atra snake envenomation, in which the subjects developed advanced tissue injury, were involved in this study. We used enzyme-ligand sandwich immunoassay (ELISA) to assay the whole venom, cytotoxin A3 and short-chain neurotoxin (sNTX) in blood, bullae, wound discharge, and debrided tissue. We found that persistently high concentrations of venom and toxins, especially cytotoxin A3, were detected in bullae, wound discharge fluid and necrotic tissue of these patients even after large doses of specific antivenom treatment, and wide excision and advanced debridement could largely remove these toxins, lessen the size of necrosis, and promote wound healing. We also found that the point-of-care apparatus, ICT-Cobra kit, might be used to promptly monitor the wound condition and as one of the indicators of surgical intervention in cases of cobra envenomation in Taiwan.


Subject(s)
Cytotoxins/analysis , Elapid Venoms/analysis , Neurotoxins/analysis , Snake Bites , Aged , Aged, 80 and over , Animals , Antivenins/therapeutic use , Female , Humans , Male , Middle Aged , Naja naja , Pilot Projects , Snake Bites/drug therapy
6.
Toxins (Basel) ; 13(8)2021 08 10.
Article in English | MEDLINE | ID: mdl-34437427

ABSTRACT

Three-finger toxins (3FTXs) are the most clinically relevant components in cobra (genus Naja) venoms. Administration of the antivenom is the recommended treatment for the snakebite envenomings, while the efficacy to cross-neutralize the different cobra species is typically limited, which is presumably due to intra-specific variation of the 3FTXs composition in cobra venoms. Targeting the clinically relevant venom components has been considered as an important factor for novel antivenom design. Here, we used the recombinant type of long-chain α-neurotoxins (P01391), short-chain α-neurotoxins (P60770), and cardiotoxin A3 (P60301) to generate a new immunogen formulation and investigated the potency of the resulting antiserum against the venom lethality of three medially important cobras in Asia, including the Thai monocled cobra (Naja kaouthia), the Taiwan cobra (Naja atra), and the Thai spitting cobra (Naja Siamensis) snake species. With the fusion of protein disulfide isomerase and the low-temperature settings, the correct disulfide bonds were built on these recombinant 3FTXs (r3FTXs), which were confirmed by the circular dichroism spectra and tandem mass spectrometry. Immunization with r3FTX was able to induce the specific antibody response to the native 3FTXs in cobra venoms. Furthermore, the horse and rabbit antiserum raised by the r3FTX mixture is able to neutralize the venom lethality of the selected three medically important cobras. Thus, the study demonstrated that the r3FTXs are potential immunogens in the development of novel antivenom with broad neutralization activity for the therapeutic treatment of victims involving cobra snakes in countries.


Subject(s)
Antivenins/administration & dosage , Elapid Venoms/toxicity , Neurotoxins/toxicity , Three Finger Toxins/administration & dosage , Animals , Antibodies, Neutralizing/blood , Elapid Venoms/immunology , Elapidae , Escherichia coli/genetics , Horses , Immunization , Mice, Inbred ICR , Neurotoxins/immunology , Rabbits , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Three Finger Toxins/chemistry , Three Finger Toxins/genetics
7.
Toxins (Basel) ; 12(9)2020 09 05.
Article in English | MEDLINE | ID: mdl-32899472

ABSTRACT

Cobra snakes (genus Naja) are some of the most dangerous snake species in Asia and Africa, as their bites cause severe life-threatening respiratory failure and local tissue destruction, especially in the case of late diagnosis. The differential diagnosis of snakebite envenomation still mainly relies upon symptomatology, the patient's description, and the experience of physicians. We have designed a rapid test, immunochromatographic test of cobra (ICT-Cobra), which obtained fair results in improving the diagnosis and treatment of Naja (N.) atra snakebites in Taiwan. In this study, we further investigated the feasibility of applying the kit for the detection of other cobra venoms based on the potential interspecies similarity. We firstly demonstrated the cross-reactivity between eight venoms of medically important cobra species and the rabbit anti-N. atra IgG that was used in ICT-Cobra by Western blotting and sandwich enzyme-linked immunosorbent assay. Then, ICT-Cobra was used to detect various concentrations of the eight venoms to elucidate its performance. Noticeable correlations between the cross-reactivity of venoms from genus Naja snakes and existing geographical characteristics were found. ICT-Cobra could detect venoms from other Asian cobras with variable detection limits comparable to those observed for N. atra, but the kit was less successful in the detection of venom from African cobras. The similar but slightly different venom components and the interaction between venom and rabbit anti-N. atra IgG led to variations in the detection limits. The transcontinental usage of ICT-Cobra might be possible due to the cross-reactivity of antibodies and similarities among the larger-sized proteins. This study showed that the close immunological relationships in the genus Naja could be used to develop a venom detection kit for the diagnosis of cobra envenomation in both Asian and African regions. Additional clinical studies and technical adjustments are still needed to improve the efficacy and broadening the application of ICT-Cobra in the future.


Subject(s)
Elapid Venoms/immunology , Immunoassay/instrumentation , Immunoglobulin G/immunology , Naja/immunology , Snake Bites/diagnosis , Animals , Antibody Specificity , Cross Reactions , Diagnosis, Differential , Elapid Venoms/metabolism , Feasibility Studies , Humans , Limit of Detection , Naja/metabolism , Predictive Value of Tests , Reproducibility of Results , Snake Bites/immunology , Snake Bites/metabolism , Species Specificity , Taiwan
8.
Article in English | MEDLINE | ID: mdl-32669265

ABSTRACT

The coronavirus (CoV) disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is a health threat worldwide. Viral main protease (Mpro, also called 3C-like protease [3CLpro]) is a therapeutic target for drug discovery. Herein, we report that GC376, a broad-spectrum inhibitor targeting Mpro in the picornavirus-like supercluster, is a potent inhibitor for the Mpro encoded by SARS-CoV-2, with a half-maximum inhibitory concentration (IC50) of 26.4 ± 1.1 nM. In this study, we also show that GC376 inhibits SARS-CoV-2 replication with a half-maximum effective concentration (EC50) of 0.91 ± 0.03 µM. Only a small portion of SARS-CoV-2 Mpro was covalently modified in the excess of GC376 as evaluated by mass spectrometry analysis, indicating that improved inhibitors are needed. Subsequently, molecular docking analysis revealed that the recognition and binding groups of GC376 within the active site of SARS-CoV-2 Mpro provide important new information for the optimization of GC376. Given that sufficient safety and efficacy data are available for GC376 as an investigational veterinary drug, expedited development of GC376, or its optimized analogues, for treatment of SARS-CoV-2 infection in human is recommended.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cysteine Endopeptidases/chemistry , Protease Inhibitors/chemistry , Pyrrolidines/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Motifs , Animals , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Gene Expression , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyrrolidines/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2 , Sulfonic Acids , Thermodynamics , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
9.
J Biomed Sci ; 27(1): 47, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32241276

ABSTRACT

BACKGROUND: Influenza vaccine manufacturers traditionally use egg-derived candidate vaccine viruses (CVVs) to produce high-yield influenza viruses for seasonal or pandemic vaccines; however, these egg-derived CVVs need an adaptation process for the virus to grow in mammalian cells. The low yields of cell-based manufacturing systems using egg-derived CVVs remain an unsolved issue. This study aimed to develop high-growth cell-derived CVVs for MDCK cell-based vaccine manufacturing platforms. METHODS: Four H7N9 CVVs were generated in characterized Vero and adherent MDCK (aMDCK) cells. Furthermore, reassortant viruses were amplified in adherent MDCK (aMDCK) cells with certification, and their growth characteristics were detected in aMDCK cells and new suspension MDCK (sMDCK) cells. Finally, the plaque-forming ability, biosafety, and immunogenicity of H7N9 reassortant viruses were evaluated. RESULTS: The HA titers of these CVVs produced in proprietary suspension MDCK (sMDCK) cells and chicken embryos were 2- to 8-fold higher than those in aMDCK cells. All H7N9 CVVs showed attenuated characteristics by trypsin-dependent plaque assay and chicken embryo lethality test. The alum-adjuvanted NHRI-RG5 (derived from the fifth wave H7N9 virus A/Guangdong/SP440/2017) vaccine had the highest immunogenicity and cross-reactivity among the four H7N9 CVVs. Finally, we found that AddaVax adjuvant improved the cross-reactivity of low pathogenic H7N9 virus against highly pathogenic H7N9 viruses. CONCLUSIONS: Our study indicates that cell-derived H7N9 CVVs possessed high growth rate in new sMDCK cells and low pathogenicity in chicken embryo, and that CVVs generated by this platform are also suitable for both cell- and egg-based prepandemic vaccine production.


Subject(s)
Immunization , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/chemistry , Influenza, Human/prevention & control , Reassortant Viruses/immunology , Animals , Chick Embryo , Dogs , Humans , Influenza A Virus, H7N9 Subtype/genetics , Madin Darby Canine Kidney Cells , Reassortant Viruses/genetics
10.
Hum Vaccin Immunother ; 16(9): 2245-2251, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32118516

ABSTRACT

Outbreaks of infection by novel avian influenza virus strains in humans cause public health issues worldwide, and the development of vaccines against such novel strains is the most effective method for the prevention of these virus outbreaks. All types of vaccines must be tested for potency before use; thus, quantitative potency assays are needed for influenza vaccines. The single radial immunodiffusion (SRID) assay is considered the gold standard for quantification of influenza virus antigens, and the SRID reference reagents are essential for the determination of vaccine potency. However, it remains debatable whether reference reagents derived from egg-based vaccine platforms can be used to precisely quantify non-egg-derived vaccines; thus, influenza vaccine production using cell-based platforms has attracted increasing attention. To evaluate the utility of reference reagents derived from a cell-based influenza vaccine platform, we prepared cell-based reference reagents from MDCK cell-grown viruses and compared them with egg-derived reference reagents. A primary liquid standard (PLS) was purified from cell-derived candidate influenza vaccine viruses, and hemagglutinin (HA) antigen content was determined by a densitometric method. The produced PLS could be stored at 4°C for more than 10 months. We also established a simple HA protein purification method for goat antiserum preparation, and the performance of the resulting antiserum was compared to that of standard reagents obtained using different production platforms. The results of this study indicate that these reference reagents can be used for both cell-based and egg-based production platforms and that the differences between these two types of platforms are negligible.


Subject(s)
Influenza Vaccines , Influenza, Human , Animals , Hemagglutinin Glycoproteins, Influenza Virus , Indicators and Reagents , Vaccine Potency
11.
Vaccine X ; 1: 100017, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-31384738

ABSTRACT

The tumor necrosis factor receptor associated protein 1 (TRAP1) is a mitochondria chaperon protein that has been previously implicated as a target for cancer therapy due to its expression level is linked to tumor progression. In this study, an immunodominant phosphopeptide of TRAP1 was identified from an HLA-A2 gene transfected mouse cancer cell line using mass spectrometry, and a synthetic phosphopeptide was generated to evaluate the potency on cancer immunotherapy. In the transporter associated with antigen processing (TAP) deficient cell, the conjugated phosphate group plays a critical role to enhance the binding affinity of phosphopeptide with HLA-A2 molecule. On the basis of immunological assay, immunization of synthetic phosphopeptide could induce a high frequency of IFN-γ-secreting CD8+ T cells in HLA-A2 transgenic mice, and the stimulated cytotoxic T lymphocytes showed a high target specificity to lysis the epitope-pulsed splenocytes in vivo and the human lung cancer cell in vitro. In a tumor challenge assay, vaccination of the HLA-A2 restricted phosphopeptide appeared to suppress the tumor growth and prolong the survival period of tumor-bearing mice. These results suggest that novel phosphopeptide is naturally presented as a HLA-A2-restricted CTL epitope and capable of being a potential candidate for the development of therapeutic vaccine against high TRAP1-expressing cancers.

12.
Vaccine ; 37(47): 7117-7122, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31383484

ABSTRACT

In recent years, cell-based influenza vaccines have gained a great interest over the egg-based vaccines. Several inactivated H7N9 vaccines have been evaluated in clinical trials, including whole-virion vaccines, split vaccines and subunit vaccines. Recently, we developed a new suspension MDCK (sMDCK) cell line for influenza viruses production. However, the properties of purified antigen from sMDCK cells remain unclear. In this study, the stability of influenza H7N9 vaccine bulk derived from sMDCK cells was investigated, and the data were compared with the vaccine antigen derived from our characterized adhesion MDCK (aMDCK) cells in serum-free medium. The influenza H7N9 bulks derived from sMDCK and aMDCK cells were stored at 2-8 °C for different periods of time, and a number of parameters selected to monitor the H7N9 vaccine antigen stability were evaluated at each interval (1, 3 and 12 months). The monitored parameters included virus morphology, hemagglutinin (HA) activity, HA concentration, antigenicity, and immunogenicity. The sMDCK-derived H7N9 bulk showed similar morphology to that of the aMDCK-derived H7N9 bulk, and there were no obvious changes after the extended storage periods. Furthermore, the HA titer, HA concentration, and antigenicity of sMDCK-derived H7N9 bulk were stable after 28 months of storage. Finally, the results of hemagglutination inhibition and neutralization tests showed that sMDCK- and aMDCK-derived H7N9 vaccines had comparable immunogenicity. These results indicated that sMDCK-derived H7N9 bulk has good stability compared to that of aMDCK-derived H7N9 bulk. Thus, the newly developed suspension MDCK cell line shows a great alternative for manufacturing cell-based influenza vaccines.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Vaccines, Inactivated/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cell Line , Dogs , Hemagglutination Inhibition Tests/methods , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinins/immunology , Madin Darby Canine Kidney Cells , Neutralization Tests/methods , Orthomyxoviridae Infections/immunology , Vaccine Potency
13.
Toxins (Basel) ; 11(1)2019 01 17.
Article in English | MEDLINE | ID: mdl-30658470

ABSTRACT

Native disulfide formation is crucial to the process of disulfide-rich protein folding in vitro. As such, analysis of the disulfide bonds can be used to track the process of the folding reaction; however, the diverse structural isomers interfere with characterization due to the non-native disulfide linkages. Previously, a mass spectrometry (MS) based platform coupled with peptide demethylation and an automatic disulfide bond searching engine demonstrated the potential to screen disulfide-linked peptides for the unambiguous assignment of paired cysteine residues of toxin components in cobra venom. The developed MS-based platform was evaluated to analyze the disulfide bonds of structural isomers during the folding reaction of synthetic cardiotoxin A3 polypeptide (syn-CTX A3), an important medical component in cobra venom. Through application of this work flow, a total of 13 disulfide-linked peptides were repeatedly identified across the folding reaction, and two of them were found to contain cysteine pairings, like those found in native CTX A3. Quantitative analysis of these disulfide-linked peptides showed the occurrence of a progressive disulfide rearrangement that generates a native disulfide bond pattern on syn-CTX A3 folded protein. The formation of these syn-CTX A3 folded protein reaches a steady level in the late stage of the folding reaction. Biophysical and cell-based assays showed that the collected syn-CTX A3 folded protein have a ß-sheet secondary structure and cytotoxic activity similar to that of native CTX A3. In addition, the immunization of the syn-CTX A3 folded proteins could induce neutralization antibodies against the cytotoxic activity of native CTX A3. In contrast, these structure activities were poorly observed in the other folded isomers with non-native disulfide bonds. The study highlights the ability of the developed MS platform to assay isomers with heterogeneous disulfide bonds, providing insight into the folding mechanism of the bioactive protein generation.


Subject(s)
Cobra Cardiotoxin Proteins/chemistry , Disulfides/chemistry , Peptides/chemistry , Animals , Cell Survival/drug effects , Chromatography, Liquid , Cobra Cardiotoxin Proteins/pharmacology , HL-60 Cells , Humans , Isomerism , Mass Spectrometry , Naja naja , Peptides/pharmacology , Protein Folding , Protein Structure, Secondary
14.
Article in English | MEDLINE | ID: mdl-30428430

ABSTRACT

Determining the precursor/product ion pair and optimal collision energy are the critical steps for developing a multiple reaction monitoring (MRM) assay using triple quadruple mass spectrometer for protein quantitation. In this study, a platform consisting of stable isotope dimethyl labeling coupled with triple-quadruple mass spectrometer was used to quantify the protein components of the influenza vaccines. Dimethyl labeling of both the peptide N-termini and the ϵ-amino group of lysine residues was achieved by reductive amination using formaldehyde and sodium cyanoborohydrate. Dimethylated peptides are known to exhibit dominant a1 ions under gas phase fragmentation in a mass spectrometer. These a1 ions can be predicted from the peptide N-terminal amino acids, and their signals do not vary significantly across a wide range of collision energies, which facilitates the determination of MRM transition settings for multiple protein targets. The intrinsic a1 ions provide sensitivity for acquiring MRM peaks that is superior to that of the typical b/y ions used for native peptides, and they also provided good linearity (R2 ≥ 0.99) at the detected concentration range for each peptide. These features allow for the simultaneous quantification of hemagglutinin and neuraminidase in vaccines derived from either embryo eggs or cell cultivation. Moreover, the low abundant ovalbumin residue originated from the manufacturing process can also be determined. The results demonstrate that the stable isotope dimethyl labeling coupled with MRM Mass spectrometry screening of a1 ions (i.e., SIDa-MS) can be used as a high-throughput platform for multiple protein quantification of vaccine products.


Subject(s)
Antigens, Viral/analysis , Influenza Vaccines/analysis , Isotope Labeling/methods , Tandem Mass Spectrometry/methods , Antigens, Viral/chemistry , Influenza Vaccines/chemistry , Limit of Detection , Linear Models , Peptide Fragments/analysis , Peptide Fragments/chemistry , Reproducibility of Results , Viral Proteins/analysis , Viral Proteins/chemistry
15.
Toxins (Basel) ; 10(1)2017 12 25.
Article in English | MEDLINE | ID: mdl-29295601

ABSTRACT

Assessing the neutralization capability of nonlethal but medically relevant toxins in venom has been a challenging task. Nowadays, neutralization efficacy is evaluated based simply on the survival rates of animals injected with antivenom together with a predefined dose of venom, which can determine potency against neurotoxicity but not validate the capability to neutralize cytotoxin-induced complications. In this study, a high correlation with in-vivo and in-vitro neutralization assays was established using the immunoreactive peptides identified from short-chain neurotoxin and cytotoxin A3. These peptides contain conserved residues associated with toxin activities and a competition assay indicated that these peptides could specifically block the antibody binding to toxin and affect the neutralization potency of antivenom. Moreover, the titers of peptide-specific antibody in antivenoms or mouse antisera were determined by enzyme-linked immunosorbent assay (ELISA) simultaneously, and the results indicated that Taiwanese bivalent antivenom (BAV) and Vietnamese snake antivenom-Naja (SAV-Naja) exhibited superior neutralization potency against the lethal effect of short-chain neurotoxin (sNTX) and cytotoxicity of cardiotoxin/cytotoxin (CTX), respectively. Thus, the reported peptide ELISA shows not only its potential for antivenom prequalification use, but also its capability of justifying the cross-neutralization potency of antivenoms against Naja atra venom toxicity.


Subject(s)
Antivenins/pharmacology , Cobra Neurotoxin Proteins/toxicity , Peptides/immunology , Animals , Cell Survival/drug effects , HL-60 Cells , Humans , Mice, Inbred BALB C , Mice, Inbred ICR , Naja naja , Neurotoxicity Syndromes/prevention & control
16.
Biochim Biophys Acta ; 1864(9): 1188-1194, 2016 09.
Article in English | MEDLINE | ID: mdl-27238563

ABSTRACT

Disulfide linkages play an important role in protein stability and activity. Thus, it is critical to characterize disulfide bonds to ensure the quality and function of protein pharmaceuticals. There are, however, problems associated with maintaining disulfide linkages in the conventional procedures that are used to digest a protein. In order to preserve enzyme activity during the digestion of a protein, it is commonly carried out at neutral to basic environment which increases the possibilities of disulfide bond scrambling. However, it is not easy to differentiate whether the scrambled disulfide linkages are initiated by the sample itself or whether they are induced during the protease digestion process. In this study, the optimum pH for minimizing disulfide bond rearrangements during the digestion process was determined. Three sets of proteases, trypsin plus Glu-C, Lys-C and thermolysin were used, followed by dimethyl labeling and mass spectrometry for a bevacizumab (Avastin) disulfide linkage analysis. No disulfide linkage scrambling was detected at pH6 when Lys-C or trypsin plus Glu-C were used as enzymes. When thermolysin was applied, some scrambled disulfide bonds were identified at pH5, 6 and 7. Nevertheless, there was less disulfide bond scrambling at a lower pH. All correct disulfide bonds on bevacizumab could be identified using this approach. The results demonstrated that by choosing the proper enzymes, using a lower pH environment for the digestion could reduce the degree of artifact disulfide scrambling.


Subject(s)
Angiogenesis Inhibitors/chemistry , Bevacizumab/chemistry , Disulfides/chemistry , Thermolysin/chemistry , Trypsin/chemistry , Amino Acid Sequence , Biocatalysis , Hydrogen-Ion Concentration , Hydrolysis , Mass Spectrometry , Solutions
17.
Mol Carcinog ; 55(1): 105-14, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25594851

ABSTRACT

Metabolic syndrome has closely linked to the development of human hepatocellular carcinoma (HCC). By using the hepatitis B virus (HBV) X (HBx) transgenic mouse model, we studied the dynamic evolution of serum and liver profiles of lipids and global cDNA expression at different stages of HBx tumorigenesis. We observed that the lipid (triglycerides, cholesterol, and fatty acids) profiles revealed a biphasic response pattern during the progression of HBx tumorigenesis: a small peak at early phase and a large peak or terminal switch at the tumor phase. By analyzing cDNA microarray data, the early peak correlated to the oxidative stress and pro-inflammatory response, which then resolved at the middle phase and were followed by the terminal metabolic switch in the tumor tissues. Five lipid metabolism-related genes, the arachidonate 5-lipoxygenase, lipoprotein lipase, fatty acid binding protein 4, 1-acylglycerol-3-phosphate O-acyltransferase 9, and apolipoprotein A-IV were identified to be significantly activated in HBx transgenic HCCs and further validated in human HBV-related HCCs. Inhibition of these lipid genes could reverse the effect of HBx on lipid biosynthesis and suppress HBx-induced cell proliferation in vitro. Our results support the concept that metabolic syndrome plays an important role in HBV tumorigenesis. The dysregulation of lipid metabolic genes may predict the disease progression to HCC in chronic hepatitis B patients.


Subject(s)
Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/metabolism , Cell Transformation, Viral , Lipid Metabolism , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Metabolomics , Trans-Activators/genetics , Animals , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Cell Transformation, Viral/genetics , Disease Models, Animal , Disease Progression , Fatty Acids/blood , Fatty Acids/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lipid Metabolism/genetics , Lipids/blood , Liver/metabolism , Liver/pathology , Liver Neoplasms/pathology , Metabolome , Metabolomics/methods , Mice , Mice, Transgenic , Neoplasm Staging , Viral Regulatory and Accessory Proteins
18.
Int J Infect Dis ; 41: 56-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26555647

ABSTRACT

OBJECTIVES: The regulation of the immunopathology of respiratory syncytial virus (RSV) by regulatory T-cells (CD4(+)CD25(+)Foxp3(+); Tregs) is not understood. METHODS: To deduce the same, Tregs were depleted in BALB/c mice by injecting anti-CD25 antibody followed by RSV infection (anti-CD25-RSV mice). RESULTS: In this model, a decrease in anti-fusion (F) antibody and neutralizing activity, and an increase in anti-nucleocapsid (N) antibody in serum, were seen. Decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activity, increased IgG2a, and an influx of activated CD8(+) T-cells into the lungs were also observed. Co-culture of splenic CD45RA(+) B-cells from RSV-infected normal mice with CD4(+) cells isolated from anti-CD25-RSV mice (B/CD4) increased anti-F antibody secretion. The inclusion of CD25(+) Tregs isolated from isotype Ig-RSV mice into the B/CD4 co-culture substantially enhanced the frequency of anti-F antibody production. However, the same effect was not seen in the co-culture of CD45RA(+) B-cells with dendritic cells (DCs) (B/DCs) or CD8(+) cells (B/CD8) that were obtained from anti-CD25-RSV mice. The transfer of enriched B-cells from anti-CD25-RSV mice into RSV-infected SCID mice increased severe lung inflammation associated with the increased viral load and eosinophil number. CONCLUSIONS: These results indicate that Tregs modulate B-cell activity, particularly in producing F-specific neutralizing antibodies, to regulate RSV-mediated exacerbated diseases.


Subject(s)
B-Lymphocytes/physiology , Respiratory Syncytial Virus Infections/immunology , T-Lymphocytes, Regulatory/physiology , Animals , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes/immunology , Female , Lung/pathology , Mice , Mice, Inbred BALB C , Mice, SCID , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/immunology , Spleen/pathology
19.
J Proteomics ; 128: 424-35, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26344130

ABSTRACT

In this study, new angiotensin-I converting enzyme (ACE) inhibitory peptides were comprehensively identified from a thermolysin digest of bitter melon (Momordica charantia) seed proteins. The hydrolysate was fractionated by reversed-phase high performance liquid chromatography (RP-HPLC), and the inhibitory activities of the resulting fractions were evaluated using ACE inhibitory assay. Two novel ACE inhibitory peptides (VY-7 and VG-8) were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database-assisted peptide sequencing. VY-7 and VG-8 were derived from momordin A and MAP30, respectively, and their IC50 values were as low as 8.64±0.60 and 13.30±0.62 µM, respectively. Lineweaver-Burk plots further indicated that VY-7, which showed the best IC50 value, acts as a competitive inhibitor. Notably, the content of VY-7 in crude thermolysin digest was determined to be as high as 14.89±0.88 µg/mg using LC-MS/MS quantification. In the spontaneously hypertensive rat (SHR) model, oral administration of VY-7 at 2mg/kg body weight significantly decreased the systolic blood pressure. The interaction between VY-7 and ACE was examined using molecular docking calculations and the results suggested that certain residues of VY-7 can fit perfectly into the S1, S1' and S2' regions of the binding pocket of ACE. BIOLOGICAL SIGNIFICANCE: One of the most common supportive therapies for treating hypertension is the use of synthetic drugs to inhibit ACE activity. Synthetic ACE inhibitors possess good antihypertensive effects, but come with accompanying side effects. Therefore, food-derived ACE inhibitory peptides are regarded as safer alternatives and are attracting much attention for hypertension treatment. In this study, we comprehensively identified peptides derived from bitter melon (Momordica charantia) seed proteins (BMSPs) using a shotgun proteomics approach. Based on results from an in vitro ACE inhibitory assay, two peptides (VY-7 and VG-8) derived from momordin A and MAP30 proteins, respectively, showed good ACE inhibitory activities. For VY-7, which showed the best IC50 value (8.64±0.60 µM), the inhibition type was determined to be competitive inhibition, as found using a Lineweaver-Burk plot. The novel ACE inhibitory peptide VY-7 (at 2mg/kg body weight) as well as the crude hydrolysate of BMSPs (at 10 mg/kg body weight) showed significant and moderate antihypertensive effects, respectively, in an animal model of hypertension, spontaneously hypertensive rats (SHRs). The present work demonstrated the screening of ACE inhibitory peptides from BMSPs and, as far as we know, VY-7 is the first well-characterized antihypertensive peptide derived from bitter melon seeds.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Drug Discovery/methods , Momordica charantia/chemistry , Peptides/chemical synthesis , Plant Proteins/chemistry , Seeds/chemistry , Amino Acid Sequence , Drug Evaluation, Preclinical/methods , Molecular Sequence Data , Plant Extracts/chemistry , Protein Hydrolysates/chemistry , Sequence Analysis, Protein/methods
20.
Antimicrob Agents Chemother ; 59(12): 7346-54, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26369971

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAb) shelter cohabiting carbapenem-susceptible bacteria from carbapenem killing via extracellular release of carbapenem-hydrolyzing class D ß-lactamases, including OXA-58. However, the mechanism of the extracellular release of OXA-58 has not been elucidated. In silico analysis predicted OXA-58 to be translocated to the periplasm via the Sec system. Using cell fractionation and Western blotting, OXA-58 with the signal peptide and C terminus deleted was not detected in the periplasmic and extracellular fractions. Overexpression of enhanced green fluorescent protein fused to the OXA-58 signal peptide led to its periplasmic translocation but not extracellular release, suggesting that OXA-58 is selectively released. The majority of the extracellular OXA-58 was associated with outer membrane vesicles (OMVs). The OMV-associated OXA-58 was detected only in a strain overexpressing OXA-58. The presence of OXA-58 in OMVs was confirmed by a carbapenem inactivation bioassay, proteomic analysis, and transmission electron microscopy. Imipenem treatment increased OMV formation and caused cell lysis, resulting in an increase in the OMV-associated and OMV-independent release of extracellular OXA-58. OMV-independent OXA-58 hydrolyzed nitrocefin more rapidly than OMV-associated OXA-58 but was more susceptible to proteinase K degradation. Rose bengal, an SecA inhibitor, inhibited the periplasmic translocation and OMV-associated release of OXA-58 and abolished the sheltering effect of CRAb. This study demonstrated that the majority of the extracellular OXA-58 is selectively released via OMVs after Sec-dependent periplasmic translocation. Addition of imipenem increased both OMV-associated and OMV-independent OXA-58, which may have different biological roles. SecA inhibitor could abolish the carbapenem-sheltering effect of CRAb.


Subject(s)
Acinetobacter baumannii/metabolism , Periplasm/metabolism , beta-Lactamases/metabolism , Acinetobacter baumannii/drug effects , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Carbapenems/pharmacology , Membrane Transport Proteins/metabolism , Protein Transport , Rose Bengal/pharmacology , SEC Translocation Channels , SecA Proteins , Secretory Vesicles/metabolism , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...