Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Bioprospect ; 8(1): 63-69, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29357092

ABSTRACT

The Phytochemical investigation on MeOH extract on the bark of Aristolochia brasiliensis Mart. & Zucc (Aristolochiaceae) led to the isolation of major compound (1) as light brown grainy crystals. The compound was identified as 1-(4-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline-6,7-diol (higenamine) on the basis of spectroscopic analysis, including 1D and 2D NMR spectroscopy. The compound was evaluated for its antimycobacterial activity against Mycobacterium indicus pranii (MIP), using Galleria mellonella larva as an in vivo infection model. The survival of MIP infected larvae after a single dose treatment of 100 mg/kg body weight of higenamine was 80% after 24 h. Quantitatively the compound exhibited a dose dependent activity, as evidenced by the reduction of colony density from 105 to 103 CFU for test concentrations of 50, 100, 150 and 200 mg/kg body weight respectively. The IC50 value for higenamine was 161.6 mg/kg body weight as calculated from a calibration curve. Further analysis showed that, a complete inhibition of MIP in the G. mellonella could be achieved at 334 mg/kg body weight. Despite the fact that MIP has been found to be highly resistant against isoniazid (INH) in an in vitro assay model, in this study the microbe was highly susceptible to this standard anti-TB drug. The isolation of higenamine from the genus Aristolochia and the method used to evaluate its in vivo antimycobacterial activity in G. mellonella are herein reported for the first time.

2.
Malar J ; 14: 79, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25890324

ABSTRACT

BACKGROUND: In Tanzania and elsewhere, medicinal plants, including Maytenus senegalensis, are still widely used in the treatment of malaria and other ailments. The aim of the present study was to investigate the in vivo antiplasmodial and toxic effects in mice. METHODS: Oral antiplasmodial and acute toxicity of the ethanolic root extract of M. senegalensis was evaluated in mice. The Peters 4-day in vivo antiplasmodial effect against early rodent malaria infection in chloroquine-sensitive Plasmodium berghei NK 65 strain in mice. RESULTS: The M. senegalensis extract was found non-toxic and the oral median lethal dose in mice was determined to be greater than 1,600 mg/kg body weight. The findings revealed a significant (P = 0.001) daily increase in the level of parasitaemia in the parasitized untreated groups and a significant (P < 0.001) dose dependent decrease in parasitaemia in the parasitized groups treated with varying doses ranging from 25 to 100 mg/kg body weight of M. senegalensis extract and the standard drug sulphadoxine/pyrimethamine at 25/1.25 mg/kg body weight. Overall, the dose dependent parasitaemia suppression effects were in the order of: 25/1.25 mg/kg body weight of sulphadoxine/pyrimethamine > 100 mg/kg > 75 mg/kg > 50 mg/kg > 25 mg/kg body weight of M. senegalensis extract. CONCLUSION: The implications of these findings is that M. senegalensis ethanolic root bark extract possess potent antiplasmodial effect and may, therefore, serve as potential sources of safe, effective and affordable anti-malarial drugs. The displayed high in vivo antiplasmodial activity and lack of toxic effect render M. senegalensis a candidate for the bioassay-guided isolation of compounds which could develop into new lead structures and candidates for drug development programmes against human malaria.


Subject(s)
Antimalarials/pharmacology , Malaria/drug therapy , Maytenus/chemistry , Plant Extracts/pharmacology , Plasmodium berghei/drug effects , Administration, Oral , Animals , Female , Lethal Dose 50 , Malaria/parasitology , Male , Mice , Parasitemia/drug therapy , Parasitemia/parasitology , Plant Bark/chemistry , Plant Roots/chemistry , Plants, Medicinal/chemistry , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...