Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Front Immunol ; 13: 865180, 2022.
Article in English | MEDLINE | ID: mdl-35799781

ABSTRACT

Dengue virus (DENV) is an arboviral disease affecting more than 400 million people annually. Only a single vaccine formulation is available commercially and many others are still under clinical trials. Despite all the efforts in vaccine designing, the improvement in vaccine formulation against DENV is very much needed. In this study, we used a roboust immunoinformatics approach, targeting all the four serotypes of DENV to design a multi-epitope vaccine. A total of 13501 MHC II binding CD4+ epitope peptides were predicted from polyprotein sequences of four dengue virus serotypes. Among them, ten conserved epitope peptides that were interferon-inducing were selected and found to be conserved among all the four dengue serotypes. The vaccine was formulated using antigenic, non-toxic and conserved multi epitopes discovered in the in-silico study. Further, the molecular docking and molecular dynamics predicted stable interactions between predicted vaccine and immune receptor, TLR-5. Finally, one of the mapped epitope peptides was synthesized for the validation of antigenicity and antibody production ability where the in-vivo tests on rabbit model was conducted. Our in-vivo analysis clearly indicate that the imunogen designed in this study could stimulate the production of antibodies which further suggest that the vaccine designed possesses good immunogenicity.


Subject(s)
Dengue Virus , Vaccines , Animals , Epitopes , Humans , Molecular Docking Simulation , Peptides , Rabbits , Serogroup
2.
Pathophysiology ; 29(1): 66-80, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35366290

ABSTRACT

miRNAs biomarkers are emerging as an essential part of clinical oncology. Their oncogenic and tumour suppressor properties playing a role in malignancy has generated interest in their potential for use in disease prognosis. While several studies on miRNA have been carried out across the globe, evaluating the clinical implications of miRNAs in cancer diagnosis and prognosis research has currently not been attempted. A study delineating the area of miRNA research, including the topics presently being focused on, the seminal papers in this field, and the direction of research interest, does not exist. This study aims to conduct a large-scale, global data analysis and bibliometric profiling analysis of studies to evaluate the research output of clinical implications of miRNAs in cancer diagnosis and prognosis listed in the SCOPUS database. A systematic search strategy was followed to identify and extract all relevant studies, subsequently analysed to generate a bibliometric map. SPSS software (version 27) was used to calculate bibliometric indicators or parameters for analysis, such as year and country of affiliation with leading authors, journals, and institutions. It is also used to analyse annual research outputs, including total citations and the number of times it has been cited with productive nations and H-index. The number of global research articles retrieved for miRNA-Cancer research over the study period 2003 to 2019 was 18,636. Between 2012 and 2019, the growth rate of global publications is six times (n = 15,959; 90.71 percent articles) that of 2003 to 2011. (2704; 9.29 per cent articles). China published the most publications in the field of miRNA in cancer (n = 7782; 41%), while the United States had the most citations (n = 327,538; 48%) during the time span. Of these journals, Oncotarget has the highest percentage of article publications. The journal Cancer Research had the most citations (n = 41,876), with 6.20 per cent (n = 41,876). This study revealed a wide variety of journals in which miRNA-Cancer research are published; these bibliometric parameters exhibit crucial clinical information on performance assessment of research productivity and quality of research output. Therefore, this study provides a helpful reference for clinical oncologists, cancer scientists, policy decision-makers and clinical data researchers.

3.
Cancers (Basel) ; 13(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34439320

ABSTRACT

Inflammation plays a major role in cancer development and progression and has the potential to be used as a prognostic marker in cancer. Previous studies have attempted to evaluate Platelet-to-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR) or monocyte-lymphocyte ratio (MLR) as indicators of inflammation/prognostic markers in cancer, but there is no common consensus on their application in clinical practice. The aim of this systematic review and meta-analysis is to (a) assess the prognostic efficacy of all three prognostic markers in comparison to each other and (b) investigate the prognostic potential of these three markers in HNC. The study followed PRISMA guidelines, with the literature being collated from multiple bibliographic databases. Preliminary and secondary screening were carried out using stringent inclusion/exclusion criteria. Meta-analysis was carried out on selected studies using CMA software and HR as the pooled effect size metric. A total of 49 studies were included in the study. The pooled HR values of PLR, NLR and MLR indicated that they were significantly correlated with poorer OS. The pooled effect estimates for PLR, NLR and MLR were 1.461 (95% CI 1.329-1.674), 1.639 (95% CI 1.429-1.880) and 1.002 (95% CI 0.720-1.396), respectively. Significant between-study heterogeneity was observed in the meta-analysis of all three. The results of this study suggest that PLR, NLR and MLR ratios can be powerful prognostic markers in head and neck cancers that can guide treatment. Further evidence from large-scale clinical studies on patient cohorts are required before they can be incorporated as a part of the clinical method. PROSPERO Registration ID: CRD42019121008.

4.
J Genet Eng Biotechnol ; 18(1): 78, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33245459

ABSTRACT

BACKGROUND: At present, viral diseases become major concern for the world. SARS-CoV2 and SFTS viruses are deadly in nature, and there is a need for developing best treatments for them. Modern in silico approaches were found to be very handy in determining putative drug molecules. In this study, we analyze interaction of beta-sesquiphellandrene (compound belongs to ginger) with spike protein (Sp) and membrane glycoprotein polyprotein (MPp). RESULTS: Our molecular docking and simulation study reveals the perfect binding pocket of Sp and MPp holding beta-sesquiphellandrene (bS). Binding energies for MPp-bS and Sp-bS were found to be - 9.5 kcal/mol and - 10.3 kcal/mol respectively. RMSD and RMSF values for docked complexes were found to be in selectable range, i.e., 1 to 3 Å and 1 to 8 Å respectively. Modern computational tools were used here to make this investigation fast and effective. Further, ADME analysis reveals the therapeutic validations for beta-sesquiphellandrene to act as a useful pharmacoactive compound. Beta-sesquiphellandrene provides not only inhibitory effect on spike protein of SARS-CoV2 but also similar inhibitory effects on membrane glycoprotein polyprotein complex of SFTS virus, which hampers the pathological initiation of the diseases caused by both the viruses, i.e., COVID-19 and severe fever with thrombocytopenia syndrome. CONCLUSION: This method of computational analysis was found to be rapid and effective, and opens new doors in the domain of in silico drug discovery. Beta-sesquiphellandrene can be used as effective medicine to control these harmful pathogens after wet lab validations.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20115303

ABSTRACT

BackgroundCancer patients with COVID-19 disease have been reported to have double the case fatality rate of the general population. Materials and methodsA systematic search of PubMed/MEDLINE, Embase, Cochrane Central, Google Scholar, and MedRxiv was done for studies on cancer patients with COVID-19. Pooled proportions were calculated for categorical variables.Odds ratio and forest plots were constructed for both primary and secondary outcomes. The random-effects model was used to account for heterogeneity between studies. ResultsThis systematic review of 31 studies and meta-analysis of 181,323 patients from 26 studies involving 23,736 cancer patients is the largest meta-analysis to the best of our knowledge assessing outcomes in cancer patients affected by COVID-19. Our meta-analysis shows that cancer patients with COVID-19 have a higher likelihood of death (odds ratio, OR 2.54), which was largely driven by mortality among patients in China. Cancer patients were more likely to be intubated, although ICU admission rates were not statistically significant. Among cancer subtypes, the mortality was highest in hematological malignancies (OR 2.43) followed by lung cancer (OR 1.8). There was no association between receipt of a particular type of oncologic therapy and mortality. Our study showed that cancer patients affected by COVID-19 are a decade older than the normal population and have a higher proportion of co-morbidities. There was insufficient data to assess the association of COVID-directed therapy and survival outcomes in cancer patients. Despite the heterogeneity of studies and inconsistencies in reported variables and outcomes, these data could guide clinical practice and oncologic care during this unprecedented global health pandemic. ConclusionCancer patients with COVID-19 disease are at increased risk of mortality and morbidity. A more nuanced understanding of the interaction between cancer-directed therapies and COVID-19-directed therapies is needed. This will require uniform prospective recording of data, possibly in multi-institutional registry databases.

SELECTION OF CITATIONS
SEARCH DETAIL