Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
PLoS One ; 13(6): e0198063, 2018.
Article in English | MEDLINE | ID: mdl-29889835

ABSTRACT

Dephosphorylation of phosphatidic acid (PA) is the penultimate step in triglyceride synthesis. Adipocytes express soluble intracellular PA-specific phosphatases (Lipins) and broader specificity membrane-associated lipid phosphate phosphatases (LPPs) that can also dephosphorylate PA. Inactivation of lipin1 causes lipodystrophy in mice due to defective developmental adipogenesis. Triglyceride synthesis is diminished but not ablated by inactivation of lipin1 in differentiated adipocytes implicating other PA phosphatases in this process. To investigate the possible role of LPPs in adipocyte lipid metabolism and signaling we made mice with adipocyte-targeted inactivation of LPP3 encoded by the Plpp3(Ppap2b) gene. Adipocyte LPP3 deficiency resulted in blunted ceramide and sphingomyelin accumulation during diet-induced adipose tissue expansion, accumulation of the LPP3 substrate sphingosine 1- phosphate, and reduced expression of serine palmitoyl transferase. However, adiposity was unaffected by LPP3 deficiency on standard, high fat diet or Western diets, although Western diet-fed mice with adipocyte LPP3 deficiency exhibited improved glucose tolerance. Our results demonstrate functional compartmentalization of lipid phosphatase activity in adipocytes and identify an unexpected role for LPP3 in the regulation of diet-dependent sphingolipid synthesis that may impact on insulin signaling.


Subject(s)
Adipocytes/metabolism , Adipogenesis , Diet/adverse effects , Obesity/enzymology , Obesity/pathology , Phosphatidate Phosphatase/metabolism , Sphingolipids/biosynthesis , Adipocytes/cytology , Adipocytes/pathology , Animals , Mice , Obesity/metabolism , Phosphatidate Phosphatase/deficiency
2.
Environ Res ; 162: 211-218, 2018 04.
Article in English | MEDLINE | ID: mdl-29353125

ABSTRACT

Trimethylamine N-oxide (TMAO) is a diet and gut microbiota-derived metabolite that has been linked to cardiovascular disease risk in human studies and animal models. TMAO levels show wide inter and intra individual variability in humans that can likely be accounted for by multiple factors including diet, the gut microbiota, levels of the TMAO generating liver enzyme Flavin-containing monooxygenase 3 (FMO3) and kidney function. We recently found that dioxin-like (DL) environmental pollutants increased FMO3 expression to elevate circulating diet-derived TMAO in mice, suggesting that exposure to this class of pollutants might also contribute to inter-individual variability in circulating TMAO levels in humans. To begin to explore this possibility we examined the relationship between body burden of DL pollutants (reported by serum lipid concentrations) and serum TMAO levels (n = 340) in the Anniston, AL cohort, which was highly exposed to polychlorinated biphenyls (PCBs). TMAO concentrations in archived serum samples from the Anniston Community Health Survey (ACHS-II) were measured, and associations of TMAO with 28 indices of pollutant body burden, including total dioxins toxic equivalent (TEQ), were quantified. Twenty-three (22 after adjustment for multiple comparisons) of the 28 indices were significantly positively associated with TMAO. Although the design of ACHS-II does not enable quantitative assessment of the contributions of previously known determinants of TMAO variability to this relationship, limited multivariate modeling revealed that total dioxins TEQ was significantly associated with TMAO among females (except at high BMIs) but not among males. Our results from this cross-sectional study indicate that exposure to DL pollutants may contribute to elevated serum TMAO levels. Prospective longitudinal studies will be required to assess the joint relationship between DL pollutant exposures, other determinants of TMAO, and health outcomes.


Subject(s)
Dioxins , Environmental Pollutants , Methylamines , Obesity, Morbid , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Animals , Cross-Sectional Studies , Dioxins/toxicity , Female , Humans , Male , Methylamines/blood , Mice , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/toxicity , Prospective Studies
3.
J Nat Prod ; 80(7): 1964-1971, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28661687

ABSTRACT

Curcumin has recently gained interest for use in drug delivery, chemical sensing, and environmental applications. As a result, the development of synthesis strategies for the incorporation of curcumin into novel materials has become a priority. One such strategy, curcumin acrylation, involves the introduction of acrylate functional groups to the curcumin scaffold, with the potential generation of mono-, di-, and triacrylate curcumin species. The relative populations of these species in the resulting multiacrylate mixture can be controlled by the ratio of curcumin to acryloyl chloride in the initial reaction formulation. Characterization of the acrylation reaction and the resulting curcumin multiacrylate product is essential for the effective preparation of new curcumin-containing materials. In this work, a synthesis method for curcumin acrylation is presented and the resulting curcumin multiacrylate product is characterized via various techniques, i.e., HPLC, LCMS, and NMR, as a basis to establish the relationship between synthesis conditions and the extent of acrylation that is achieved.


Subject(s)
Curcumin/chemistry , Acrylates/metabolism , Chromatography, High Pressure Liquid , Curcumin/metabolism , Drug Delivery Systems/methods , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
4.
ACS Omega ; 2(12): 8723-8729, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-29302630

ABSTRACT

A novel crosslinker [4,4'-dihydroxybiphenyl diacrylate (44BDA)] was developed, and a series of temperature-responsive hydrogels were synthesized through free radical polymerization of N-isopropylacrylamide (NIPAAm) with 44BDA. The temperature-responsive behavior of the resulting gels was characterized by swelling studies, and the lower critical solution temperature (LCST) of the hydrogels was characterized through differential scanning calorimetry. Increased content of 44BDA led to a decreased swelling ratio and shifted the LCST to lower temperatures. These novel hydrogels also displayed resiliency through multiple swelling-deswelling cycles, and their temperature responsiveness was reversible. The successful synthesis of NIPAAm-based hydrogels crosslinked with 44BDA has led to a new class of temperature-responsive hydrogel systems with a variety of potential applications.

5.
J Nat Prod ; 80(1): 2-11, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28029795

ABSTRACT

The isolation and structure elucidation of six new bacterial metabolites [spoxazomicin D (2), oxachelins B and C (4, 5), and carboxamides 6-8] and 11 previously reported bacterial metabolites (1, 3, 9-12a, and 14-18) from Streptomyces sp. RM-14-6 is reported. Structures were elucidated on the basis of comprehensive 1D and 2D NMR and mass spectrometry data analysis, along with direct comparison to synthetic standards for 2, 11, and 12a,b. Complete 2D NMR assignments for the known metabolites lenoremycin (9) and lenoremycin sodium salt (10) were also provided for the first time. Comparative analysis also provided the basis for structural revision of several previously reported putative aziridine-containing compounds [exemplified by madurastatins A1, B1, C1 (also known as MBJ-0034), and MBJ-0035] as phenol-dihydrooxazoles. Bioactivity analysis [including antibacterial, antifungal, cancer cell line cytotoxicity, unfolded protein response (UPR) modulation, and EtOH damage neuroprotection] revealed 2 and 5 as potent neuroprotectives and lenoremycin (9) and its sodium salt (10) as potent UPR modulators, highlighting new functions for phenol-oxazolines/salicylates and polyether pharmacophores.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Ethers/chemistry , Ethers/pharmacology , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , Oligopeptides/isolation & purification , Oligopeptides/pharmacology , Oxazoles/isolation & purification , Oxazoles/pharmacology , Peptides/pharmacology , Phenols/chemistry , Phenols/pharmacology , Streptomyces/chemistry , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Appalachian Region , Coal , Ethers/isolation & purification , Humans , Molecular Structure , Neuroprotective Agents/chemistry , Nuclear Magnetic Resonance, Biomolecular , Oligopeptides/chemistry , Oxazoles/chemistry , Peptides/chemistry , Phenols/isolation & purification
6.
J Nat Prod ; 80(1): 12-18, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28029796

ABSTRACT

The assessment of glycosyl-scanning to expand the molecular and functional diversity of metabolites from the underground coal mine fire-associated Streptomyces sp. RM-14-6 is reported. Using the engineered glycosyltransferase OleD Loki and a 2-chloro-4-nitrophenylglycoside-based screen, six metabolites were identified as substrates of OleD Loki, from which 12 corresponding metabolite glycosides were produced and characterized. This study highlights the first application of the 2-chloro-4-nitrophenylglycoside-based screen toward an unbiased set of unique microbial natural products and the first reported application of the 2-chloro-4-nitrophenylglycoside-based transglycosylation reaction for the corresponding preparative synthesis of target glycosides. Bioactivity analysis (including antibacterial, antifungal, anticancer, and EtOH damage neuroprotection assays) revealed glycosylation to attenuate the neuroprotective potency of 4, while glycosylation of the structurally related inactive spoxazomicin C (3) remarkably invoked neuroprotective activity.


Subject(s)
Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Glycosides/chemistry , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , Oligopeptides/isolation & purification , Oligopeptides/pharmacology , Oxazoles/isolation & purification , Oxazoles/pharmacology , Streptomyces/chemistry , Antifungal Agents/chemistry , Glycosylation , Molecular Structure , Neuroprotective Agents/chemistry , Oligopeptides/chemistry , Oxazoles/chemistry
7.
ACS Chem Biol ; 11(9): 2484-91, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27351335

ABSTRACT

S-adenosyl-l-methionine (AdoMet) is an essential enzyme cosubstrate in fundamental biology with an expanding range of biocatalytic and therapeutic applications. We report the design, synthesis, and evaluation of stable, functional AdoMet isosteres that are resistant to the primary contributors to AdoMet degradation (depurination, intramolecular cyclization, and sulfonium epimerization). Corresponding biochemical and structural studies demonstrate the AdoMet surrogates to serve as competent enzyme cosubstrates and to bind a prototypical class I model methyltransferase (DnrK) in a manner nearly identical to AdoMet. Given this conservation in function and molecular recognition, the isosteres presented are anticipated to serve as useful surrogates in other AdoMet-dependent processes and may also be resistant to, and/or potentially even inhibit, other therapeutically relevant AdoMet-dependent metabolic transformations (such as the validated drug target AdoMet decarboxylase). This work also highlights the ability of the prototypical class I model methyltransferase DnrK to accept non-native surrogate acceptors as an enabling feature of a new high-throughput methyltransferase assay.


Subject(s)
S-Adenosylmethionine/chemistry , Hydrolysis
8.
J Nutr Biochem ; 33: 145-53, 2016 07.
Article in English | MEDLINE | ID: mdl-27155921

ABSTRACT

The etiology of cardiovascular disease (CVD) is impacted by multiple modifiable and non-modifiable risk factors including dietary choices, genetic predisposition, and environmental exposures. However, mechanisms linking diet, exposure to pollutants, and CVD risk are largely unclear. Recent studies identified a strong link between plasma levels of nutrient-derived Trimethylamine N-oxide (TMAO) and coronary artery disease. Dietary precursors of TMAO include carnitine and phosphatidylcholine, which are abundant in animal-derived foods. Dioxin-like pollutants can upregulate a critical enzyme responsible for TMAO formation, hepatic flavin containing monooxygenase 3 (FMO3), but a link between dioxin-like PCBs, upregulation of FMO3, and increased TMAO has not been reported. Here, we show that mice exposed acutely to dioxin-like PCBs exhibit increased hepatic FMO3 mRNA, protein, as well as an increase in circulating levels of TMAO following oral administration of its metabolic precursors. C57BL/6 mice were exposed to 5µmol PCB 126/kg mouse weight (1.63mg/kg). At 48h post-PCB exposure, mice were subsequently given a single gavage of phosphatidylcholine dissolved in corn oil. Exposure to 5 µmole/kg PCB 126 resulted in greater than 100-fold increase in FMO3 mRNA expression, robust induction of FMO3 protein, and a 5-fold increase in TMAO levels compared with vehicle treated mice. We made similar observations in mice exposed to PCB 77 (49.6mg/kg twice); stable isotope tracer studies revealed increased formation of plasma TMAO from an orally administered precursor trimethylamine (TMA). Taken together, these observations suggest a novel diet-toxicant interaction that results in increased production of a circulating biomarker of cardiovascular disease risk.


Subject(s)
Atherosclerosis/etiology , Choline/metabolism , Environmental Pollutants/toxicity , Liver/drug effects , Methylamines/blood , Oxygenases/metabolism , Polychlorinated Biphenyls/toxicity , Administration, Oral , Animals , Atherosclerosis/blood , Atherosclerosis/metabolism , Biomarkers/blood , Choline/administration & dosage , Deuterium , Dietary Fats/metabolism , Environmental Pollutants/administration & dosage , Enzyme Induction/drug effects , Food-Drug Interactions , Liver/enzymology , Liver/metabolism , Male , Methylamines/administration & dosage , Methylamines/metabolism , Mice, Inbred C57BL , Oxygenases/chemistry , Oxygenases/genetics , Phosphatidylcholines/administration & dosage , Phosphatidylcholines/metabolism , Polychlorinated Biphenyls/administration & dosage , Random Allocation , Up-Regulation/drug effects
9.
Nat Commun ; 7: 11248, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27075612

ABSTRACT

Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs.


Subject(s)
Bile Acids and Salts/metabolism , Lysophospholipids/metabolism , Phosphoric Diester Hydrolases/metabolism , Signal Transduction , Steroids/metabolism , Animals , Bile Acids and Salts/chemistry , Crystallography, X-Ray , HEK293 Cells , HeLa Cells , Humans , Hydroxycholesterols/chemistry , Hydroxycholesterols/metabolism , Kinetics , Lysophospholipids/chemistry , Models, Molecular , Molecular Conformation , Molecular Structure , Phosphoric Diester Hydrolases/chemistry , Protein Binding , Protein Structure, Tertiary , Rats , Receptors, Lysophosphatidic Acid/metabolism , Steroids/chemistry , Taurochenodeoxycholic Acid/chemistry , Taurochenodeoxycholic Acid/metabolism
10.
Environ Sci Pollut Res Int ; 23(3): 2201-11, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25586614

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to the initiation of cardiovascular disease. Exercise has been shown to reduce the risk of cardiovascular disease; however, whether exercise can modulate PCB-induced vascular endothelial dysfunction and associated cardiovascular risk factors is unknown. We examined the effects of exercise on coplanar PCB-induced cardiovascular risk factors including oxidative stress, inflammation, impaired glucose tolerance, hypercholesteremia, and endothelium-dependent relaxation. Male ApoE(-/-) mice were divided into sedentary and exercise groups (voluntary wheel running) over a 12-week period. Half of each group was exposed to vehicle or PCB 77 at weeks 1, 2, 9, and 10. For ex vivo studies, male C57BL/6 mice exercised via voluntary wheel training for 5 weeks and then were administered with vehicle or PCB 77 24 h before vascular reactivity studies were performed. Exposure to coplanar PCB increased risk factors associated with cardiovascular disease, including oxidative stress and systemic inflammation, glucose intolerance, and hypercholesteremia. The 12-week exercise intervention significantly reduced these proatherogenic parameters. Exercise also upregulated antioxidant enzymes including phase II detoxification enzymes. Sedentary animals exposed to PCB 77 exhibited endothelial dysfunction as demonstrated by significant impairment of endothelium-dependent relaxation, which was prevented by exercise. Lifestyle modifications such as aerobic exercise could be utilized as a therapeutic approach for the prevention of adverse cardiovascular health effects induced by environmental pollutants such as PCBs.


Subject(s)
Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Exercise , Polychlorinated Biphenyls/toxicity , Animals , Cardiovascular Diseases/immunology , Cardiovascular Diseases/physiopathology , Environmental Pollutants/toxicity , Humans , Male , Mice , Mice, Inbred C57BL , Motor Activity , Oxidative Stress/drug effects , Risk Factors
11.
Antimicrob Agents Chemother ; 60(3): 1865-8, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26666918

ABSTRACT

We examined the pharmacokinetic properties of vancomycin conjugated to a bone-targeting agent (BT) with high affinity for hydroxyapatite after systemic intravenous administration. The results confirm enhanced persistence of BT-vancomycin in plasma and enhanced accumulation in bone relative to vancomycin. This suggests that BT-vancomycin may be a potential carrier for the systemic targeted delivery of vancomycin in the treatment of bone infections, potentially reducing the reliance on surgical debridement to achieve the desired therapeutic outcome.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Drug Carriers/therapeutic use , Durapatite/metabolism , Osteomyelitis/drug therapy , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Animals , Anti-Bacterial Agents/pharmacokinetics , Bone and Bones/metabolism , Debridement , Disease Models, Animal , Humans , Osteomyelitis/microbiology , Polyethylene Glycols/chemistry , Rats , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Vancomycin/therapeutic use
13.
Stem Cells Transl Med ; 4(11): 1333-43, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26371341

ABSTRACT

UNLABELLED: Acute myocardial infarction (AMI) triggers mobilization of bone marrow (BM)-derived stem/progenitor cells (BMSPCs) through poorly understood processes. Recently, we postulated a major role for bioactive lipids such as sphingosine-1 phosphate (S1P) in mobilization of BMSPCs into the peripheral blood (PB). We hypothesized that elevating S1P levels after AMI could augment BMSPC mobilization and enhance cardiac recovery after AMI. After AMI, elevating bioactive lipid levels was achieved by treating mice with the S1P lyase inhibitor tetrahydroxybutylimidazole (THI) for 3 days (starting at day 4 after AMI) to differentiate between stem cell mobilization and the known effects of S1P on myocardial ischemic pre- and postconditioning. Cardiac function was assessed using echocardiography, and myocardial scar size evolution was examined using cardiac magnetic resonance imaging. PB S1P and BMSPCs peaked at 5 days after AMI and returned to baseline levels within 10 days (p < .05 for 5 days vs. baseline). Elevated S1P paralleled a significant increase in circulating BMSPCs (p < .05 vs. controls). We observed a greater than twofold increase in plasma S1P and circulating BMSPCs after THI treatment. Mechanistically, enhanced BMSPC mobilization was associated with significant increases in angiogenesis, BM cell homing, cardiomyocytes, and c-Kit cell proliferation in THI-treated mice. Mice treated with THI demonstrated better recovery of cardiac functional parameters and a reduction in scar size. Pharmacological elevation of plasma bioactive lipids after AMI could contribute to BMSPC mobilization and could represent an attractive strategy for enhancing myocardial recovery and improving BMSC targeting. SIGNIFICANCE: Acute myocardial infarction (AMI) initiates innate immune and reparatory mechanisms through which bone marrow-derived stem/progenitor cells (BMSPCs) are mobilized toward the ischemic myocardium and contribute to myocardial regeneration. Although it is clear that the magnitude of BMSPC mobilization after AMI correlates with cardiac recovery, the molecular events driving BMSPC mobilization and homing are poorly understood. The present study confirms the role of bioactive lipids in BMSPC mobilization after AMI and proposes a new strategy that improves cardiac recovery. Inhibiting sphingosine-1 phosphate (S1P) lyase (SPL) allows for the augmentation of the plasma levels of S1P and stem cell mobilization. These findings demonstrate that early transient SPL inhibition after MI correlates with increased stem cell mobilization and their homing to the infarct border zones. Augmenting BMSPC mobilization correlated with the formation of new blood vessels and cardiomyocytes and c-Kit cell proliferation. These novel findings on the cellular level were associated with functional cardiac recovery, reduced adverse remodeling, and a decrease in scar size. Taken together, these data indicate that pharmacological elevation of bioactive lipid levels can be beneficial in the early phase after cardiac ischemic injury. These findings provide the first evidence that a carefully timed transient pharmacological upregulation of bioactive lipids after AMI could be therapeutic, because it results in significant cardiac structural and functional improvements.


Subject(s)
Bone Marrow Cells/metabolism , Enzyme Inhibitors/pharmacology , Hematopoietic Stem Cell Mobilization , Lysophospholipids/blood , Membrane Proteins/antagonists & inhibitors , Myocardial Infarction , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Sphingosine/analogs & derivatives , Stem Cells/metabolism , Animals , Biomarkers/blood , Bone Marrow Cells/pathology , Disease Models, Animal , Imidazoles/pharmacology , Membrane Proteins/metabolism , Mice , Myocardial Infarction/blood , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Phosphoric Monoester Hydrolases/metabolism , Sphingosine/blood , Stem Cells/pathology
14.
J Pharmacol Exp Ther ; 355(2): 280-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26354995

ABSTRACT

Doxorubicin (DOX), an effective cancer chemotherapeutic agent, induces dose-dependent cardiotoxicity, in part due to its ability to cause oxidative stress. We investigated the role of multidrug resistance-associated protein 1 (Mrp1/Abcc1) in DOX-induced cardiotoxicity in C57BL wild-type (WT) mice and their Mrp1 null (Mrp1(-/-)) littermates. Male mice were administered intraperitoneal DOX (3 or 2 mg/kg body weight) or saline twice a week for 3 weeks and examined 2 weeks after the last dose (protocol A total dose: 18 mg/kg) or for 5 weeks, and mice were examined 48 hours and 2 weeks after the last dose (protocol B total dose: 20 mg/kg). Chronic DOX induced body weight loss and hemotoxicity, adverse effects significantly exacerbated in Mrp1(-/-) versus WT mice. In the heart, significantly higher basal levels of glutathione (1.41-fold ± 0.27-fold) and glutathione disulfide (1.35-fold ± 0.16-fold) were detected in Mrp1(-/-) versus WT mice, and there were comparable decreases in the glutathione/glutathione disulfide ratio in WT and Mrp1(-/-) mice after DOX administration. Surprisingly, DOX induced comparable increases in 4-hydroxynonenal glutathione conjugate concentration in hearts from WT and Mrp1(-/-) mice. However, more DOX-induced apoptosis was detected in Mrp1(-/-) versus WT hearts (P < 0.05) (protocol A), and cardiac function, assessed by measurement of fractional shortening and ejection fraction with echocardiography, was significantly decreased by DOX in Mrp1(-/-) versus WT mice (P < 0.05; 95% confidence intervals of 20.0%-24.3% versus 23.7%-29.5% for fractional shortening, and 41.5%-48.4% versus 47.7%-56.7% for ejection fraction; protocol B). Together, these data indicate that Mrp1 protects the mouse heart against chronic DOX-induced cardiotoxicity.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cardiotoxicity/physiopathology , Doxorubicin/toxicity , Multidrug Resistance-Associated Proteins/genetics , Animals , Apoptosis , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Glutathione/analogs & derivatives , Glutathione/metabolism , Glutathione Disulfide/metabolism , Leukocyte Count , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Myocardium/metabolism , Myocardium/pathology , Systole , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/physiopathology
15.
J Pharmacol Exp Ther ; 355(2): 272-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26354996

ABSTRACT

Cardiotoxicity is a major dose-limiting adverse effect of doxorubicin (DOX), mediated in part by overproduction of reactive oxygen species and oxidative stress. Abcc1 (Mrp1) mediates the efflux of reduced and oxidized glutathione (GSH, GSSG) and is also a major transporter that effluxes the GSH conjugate of 4-hydroxy-2-nonenal (HNE; GS-HNE), a toxic product of lipid peroxidation formed during oxidative stress. To assess the role of Mrp1 in protecting the heart from DOX-induced cardiac injury, wild-type (WT) and Mrp1 null (Mrp1(-/-)) C57BL/6 littermate mice were administered DOX (15 mg/kg) or saline (7.5 ml/kg) i.v., and heart ventricles were examined at 72 hours. Morphometric analysis by electron microscopy revealed extensive injuries in cytosol, mitochondria, and nuclei of DOX-treated mice in both genotypes. Significantly more severely injured nuclei were observed in Mrp1(-/-) versus WT mice (P = 0.031). GSH and the GSH/GSSG ratio were significantly increased in treatment-naïve Mrp1(-/-) versus WT mice; GSH remained significantly higher in Mrp1(-/-) versus WT mice after saline and DOX treatment, with no changes in GSSG or GSH/GSSG. GS-HNE, measured by mass spectrometry, was lower in the hearts of treatment-naïve Mrp1(-/-) versus WT mice (P < 0.05). DOX treatment decreased GS-HNE in WT but not Mrp1(-/-) mice, so that GS-HNE was modestly but significantly higher in Mrp1(-/-) versus WT hearts after DOX. Expression of enzymes mediating GSH synthesis and antioxidant proteins did not differ between genotypes. Thus, despite elevated GSH levels in Mrp1(-/-) hearts, DOX induced significantly more injury in the nuclei of Mrp1(-/-) versus WT hearts.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cell Nucleus/drug effects , Doxorubicin/toxicity , Glutathione/metabolism , Multidrug Resistance-Associated Proteins/genetics , Myocardium/metabolism , Myocardium/ultrastructure , Animals , Cardiotoxicity/metabolism , Glutathione/analogs & derivatives , Glutathione Disulfide/metabolism , Lipid Peroxidation , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress
16.
Org Lett ; 17(11): 2796-9, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25961722

ABSTRACT

Terfestatins B (1) and C (2), new p-terphenyls bearing a novel unsaturated hexuronic acid (4-deoxy-α-L-threo-hex-4-enopyranuronate), a unique ß-D-glycosyl ester of 5-isoprenylindole-3-carboxylate (3) and the same rare sugar, and two new hygromycin precursors, were characterized as metabolites of the coal mine fire isolate Streptomyces sp. RM-5-8. EtOH damage neuroprotection assays using rat hippocampal-derived primary cell cultures with 1, 2, 3 and echoside B (a terfestatin C-3'-ß-D-glucuronide from Streptomyces sp. RM-5-8) revealed 1 as potently neuroprotective, highlighting a new potential application of the terfestatin scaffold.


Subject(s)
Glucosides/chemistry , Glucuronides/chemistry , Glycosides/chemistry , Hexuronic Acids/chemistry , Streptomyces/chemistry , Terphenyl Compounds/chemistry , Animals , Molecular Structure , Rats
17.
J Biol Chem ; 290(22): 13710-24, 2015 May 29.
Article in English | MEDLINE | ID: mdl-25855790

ABSTRACT

A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5'-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5'-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5'-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures.


Subject(s)
Aminoglycosides/biosynthesis , Aminoglycosides/genetics , Anti-Bacterial Agents/biosynthesis , Drug Resistance, Bacterial , Multigene Family , Uridine/analogs & derivatives , Uridine/chemistry , Aminoglycosides/chemistry , Anti-Bacterial Agents/chemistry , Base Sequence , Drug Design , Escherichia coli/metabolism , Heme/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Open Reading Frames , Phosphorylation , Polymerase Chain Reaction , Protein Binding , Recombinant Proteins/chemistry , Streptomyces/metabolism , Threonine/chemistry , Transaldolase/metabolism , Uridine/biosynthesis , Uridine Monophosphate/chemistry
18.
J Biol Chem ; 290(18): 11547-56, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25784555

ABSTRACT

Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure.


Subject(s)
Adipocytes/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Obesity/metabolism , Obesity/pathology , Adipocytes/drug effects , Animals , Female , Humans , Insulin Resistance , Male , Mice , Mice, Transgenic , Obesity/enzymology , Obesity/genetics , Phenotype , Thiazolidinediones/pharmacology
19.
Environ Health Perspect ; 123(10): 944-50, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25734695

ABSTRACT

BACKGROUND: Coplanar polychlorinated biphenyls (PCBs) promote adipocyte inflammation and impair glucose homeostasis in lean mice. The diabetes-promoting effects of lipophilic PCBs have been observed only during weight loss in obese mice. The molecular mechanisms linking PCB exposures to impaired glucose metabolism are unclear. OBJECTIVES: In this study we tested the hypothesis that coplanar PCBs act at adipocyte aryl hydrocarbon receptors (AhRs) to promote adipose inflammation and impair glucose homeostasis in lean mice and in obese mice during weight loss. METHODS AND RESULTS: PCB-77 administration impaired glucose and insulin tolerance in LF (low fat diet)-fed control (AhR(fl/fl)) mice but not in adipocyte AhR-deficient mice (AhR(AdQ)). Unexpectedly, AhR(AdQ) mice exhibited increased fat mass when fed a standard LF or high fat (HF) diet. In mice fed a HF diet, both genotypes became obese, but AhR(AdQ) mice administered vehicle (VEH) exhibited increased body weight, adipose mass, adipose inflammation, and impaired glucose tolerance compared with AhR(fl/fl) controls. Impairment of glucose homeostasis in response to PCB-77 was not observed in obese mice of either genotype. However, upon weight loss, AhR(fl/fl) mice administered PCB-77 exhibited increased abundance of adipose tumor necrosis factor-α (TNF-α) mRNA and impaired glucose homeostasis compared with those administered VEH. In contrast, PCB-77 had no effect on TNF-α or glucose homeostasis in AhR(AdQ) mice exhibiting weight loss. CONCLUSIONS: Our results demonstrate that adipocyte AhR mediates PCB-induced adipose inflammation and impairment of glucose homeostasis in mice. Moreover, deficiency of AhR in adipocytes augmented the development of obesity, indicating that endogenous ligand(s) for AhR regulate adipose homeostasis.


Subject(s)
Glucose/metabolism , Homeostasis/drug effects , Insulin Resistance , Polychlorinated Biphenyls/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Adipocytes/metabolism , Animals , Diet, Fat-Restricted , Diet, High-Fat/adverse effects , Female , Male , Mice , Obesity/etiology , Receptors, Aryl Hydrocarbon/deficiency , Weight Loss
20.
J Lipid Res ; 56(4): 898-908, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25691431

ABSTRACT

The ORM1 (Saccharomyces cerevisiae)-like proteins (ORMDLs) and their yeast orthologs, the Orms, are negative homeostatic regulators of the initiating enzyme in sphingolipid biosynthesis, serine palmitoyltransferase (SPT). Genome-wide association studies have established a strong correlation between elevated expression of the endoplasmic reticulum protein ORMDL3 and risk for childhood asthma. Here we test the notion that elevated levels of ORMDL3 decrease sphingolipid biosynthesis. This was tested in cultured human bronchial epithelial cells (HBECs) (an immortalized, but untransformed, airway epithelial cell line) and in HeLa cells (a cervical adenocarcinoma cell line). Surprisingly, elevated ORMDL3 expression did not suppress de novo biosynthesis of sphingolipids. We determined that ORMDL is expressed in functional excess relative to SPT at normal levels of expression. ORMDLs and SPT form stable complexes that are not increased by elevated ORMDL3 expression. Although sphingolipid biosynthesis was not decreased by elevated ORMDL3 expression, the steady state mass levels of all major sphingolipids were marginally decreased by low level ORMDL3 over-expression in HBECs. These data indicate that the contribution of ORMDL3 to asthma risk may involve changes in sphingolipid metabolism, but that the connection is complex.


Subject(s)
Membrane Proteins/genetics , Membrane Proteins/metabolism , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/biosynthesis , Animals , Asthma/enzymology , Asthma/genetics , Asthma/metabolism , Bronchi/cytology , Epithelial Cells/metabolism , Gene Expression , Gene Silencing , HeLa Cells , Humans , Membrane Proteins/deficiency , Mice , Phenotype , RNA, Small Interfering/genetics , Sphingolipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...