Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Matrix Biol ; 123: 34-47, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783236

ABSTRACT

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation did not result in ß-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Mice , Animals , Humans , Hyaluronic Acid/metabolism , Diabetes Mellitus, Type 2/genetics , Hymecromone/pharmacology , Islets of Langerhans/metabolism , Obesity/genetics , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism
2.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909502

ABSTRACT

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We have identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low levels of HA are present in healthy pancreatic islets. However, HA substantially accumulates in cadaveric islets of human T2D and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the major HA receptor CD44, preserve glycemic control and insulin levels in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserve glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we find that 4-MU increases the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation does not result in ß-cell apoptosis. These data indicate a role for HA accumulation in diabetes pathogenesis and suggest that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.

3.
Cell Rep Med ; 3(6): 100656, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35732145

ABSTRACT

Chronic wounds infected by Pseudomonas aeruginosa (Pa) are characterized by disease progression and increased mortality. We reveal Pf, a bacteriophage produced by Pa that delays healing of chronically infected wounds in human subjects and animal models of disease. Interestingly, impairment of wound closure by Pf is independent of its effects on Pa pathogenesis. Rather, Pf impedes keratinocyte migration, which is essential for wound healing, through direct inhibition of CXCL1 signaling. In support of these findings, a prospective cohort study of 36 human patients with chronic Pa wound infections reveals that wounds infected with Pf-positive strains of Pa are more likely to progress in size compared with wounds infected with Pf-negative strains. Together, these data implicate Pf phage in the delayed wound healing associated with Pa infection through direct manipulation of mammalian cells. These findings suggest Pf may have potential as a biomarker and therapeutic target in chronic wounds.


Subject(s)
Inovirus , Pseudomonas Infections , Wound Infection , Animals , Biofilms , Humans , Mammals , Prospective Studies , Pseudomonas , Pseudomonas Infections/therapy , Pseudomonas aeruginosa , Wound Healing , Wound Infection/therapy
4.
Recent Pat Anticancer Drug Discov ; 18(2): 224-240, 2022.
Article in English | MEDLINE | ID: mdl-35593340

ABSTRACT

BACKGROUND: SV-BR-1-GM, derived from a patient with grade 2 (moderately differentiated) breast cancer, is a GM-CSF-secreting breast cancer cell line with properties of antigen-presenting cells. SV-BR-1-GM and next-generation versions are covered by several pending and granted patents. METHODS: We report findings from an open-label phase I, single-arm pilot study with irradiated SV-BR-1-GM cells in 3 breast and 1 ovarian cancer subjects. Inoculations were preceded by lowdose intravenous cyclophosphamide and followed by interferon-alpha2b injections into the SVBR- 1-GM inoculation sites. We assessed both cellular and humoral immune responses, and measured expression levels of SV-BR-1-GM HLA alleles. RESULTS: Treatment was generally safe and well tolerated. Immune responses were elicited universally. Overall survival was more than 33 months for three of the four patients. As previously reported, one patient had prompt regression of metastases in lung, breast, and soft tissue. Following cessation of treatment, the patient relapsed widely, including in the brain. Upon retreatment, rapid tumor response was again seen, including complete regression of brain metastases. Consistent with a role of Class II HLA in contributing to SV-BR-1-GM's mechanism of action, this patient allele-matched SV-BR-1-GM at the HLA-DRB1 and HLA-DRB3 loci. We are in the process of developing next-generation SV-BR-1-GM, expressing patient-specific HLAs. Patent applications were filed in various jurisdictions. Thus far, one is granted, in Japan. CONCLUSION: A whole-cell immunotherapy regimen with SV-BR-1-GM cells induced regression of metastatic breast cancer. We develop intellectual property based on SV-BR-1-GM's predicted mechanism of action to develop additional whole-cell immunotherapies for cancer patients.


Subject(s)
Breast Neoplasms , Cancer Vaccines , Neoplasms, Second Primary , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Pilot Projects , Patents as Topic , Biomarkers , Cell Line , Melanoma, Cutaneous Malignant
5.
J Vis Exp ; (156)2020 02 20.
Article in English | MEDLINE | ID: mdl-32150161

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is a major nosocomial pathogen of increasing relevance to human health and disease, particularly in the setting of chronic wound infections in diabetic and hospitalized patients. There is an urgent need for chronic infection models to aid in the investigation of wound pathogenesis and the development of new therapies against this pathogen. Here, we describe a protocol that uses delayed inoculation 24 hours after full-thickness excisional wounding. The infection of the provisional wound matrix present at this time forestalls either rapid clearance or dissemination of infection and instead establishes chronic infection lasting 7-10 days without the need for implantation of foreign materials or immune suppression. This protocol mimics a typical temporal course of post-operative infection in humans. The use of a luminescent P. aeruginosa strain (PAO1:lux) allows for quantitative daily assessment of bacterial burden for P. aeruginosa wound infections. This novel model may be a useful tool in the investigation of bacterial pathogenesis and the development of new therapies for chronic P. aeruginosa wound infections.


Subject(s)
Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Wound Infection/microbiology , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Pseudomonas Infections/pathology , Wound Infection/pathology
6.
Adv Wound Care (New Rochelle) ; 9(2): 35-47, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31903297

ABSTRACT

Objective: Our goal was to develop a chronic wound model in mice that avoids implantation of foreign material or impaired immunity and to use this to characterize the local and systemic immune response associated with Pseudomonas aeruginosa infection. Approach: We generated bilateral full-thickness dermal wounds in healthy 10-12-week-old C57Bl6 mice. We waited 24 h to inoculate the developing wound eschar at these sites. We performed careful titration experiments with luminescent strains of P. aeruginosa to identify bacterial inoculation concentrations that consistently established stable infections in these animals. We performed flow cytometry-based immunophenotyping of immune cell infiltrates at the wound site, spleen, and draining lymph nodes over time. Finally, we compared inflammatory responses seen in wound inoculation with planktonic bacteria, preformed biofilm, and heat-killed (HK) P. aeruginosa. Results: Using this delayed inoculation model and 7.5 ± 2.5 × 102 CFU/mL of PAO1 we consistently established stable infections that lasted at 10 days in duration. During early infection, we detected a strong upregulation of inflammatory cytokines and neutrophil infiltration at the wound site, while natural killer (NK) cells and dendritic cells (DCs) were reduced. At the systemic level, only plasmacytoid DCs were increased early in infection. During later stages, there was systemic upregulation of B cells, T cells, and macrophages, whereas NK cells and interferon killer DCs were reduced. Infections with P. aeruginosa biofilms were not more virulent than infections with planktonic P. aeruginosa, whereas treatment with HK P. aeruginosa only induces a short-term inflammatory state. Innovation: We describe a versatile wound model of chronic P. aeruginosa infection that lasts 10 days without causing sepsis or other excessive morbidity. Conclusion: This model may facilitate the study of chronic wound infections in immunocompetent mice. Our findings also highlight the induction of early innate immune cell populations during P. aeruginosa infection.


Subject(s)
Biofilms/growth & development , Cytokines/immunology , Pseudomonas Infections/immunology , Wound Infection/immunology , Wound Infection/microbiology , Animals , Disease Models, Animal , Immunity , Immunocompetence , Male , Mice , Mice, Inbred C57BL , Pseudomonas aeruginosa , Wound Infection/pathology
7.
Nat Metab ; 1(5): 546-559, 2019 05.
Article in English | MEDLINE | ID: mdl-31602424

ABSTRACT

Therapeutic increase of brown adipose tissue (BAT) thermogenesis is of great interest as BAT activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, found in the extracellular matrix, which is synthesized by HA synthases (Has1/Has2/Has3) from sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small molecule 4-methylumbelliferone (4-MU). Here, we show that the inhibition of HA-synthesis by 4-MU or genetic deletion of Has2/Has3 improves BAT`s thermogenic capacity, reduces body weight gain, and improves glucose homeostasis independently from adrenergic stimulation in mice on diabetogenic diet, as shown by a magnetic resonance T2 mapping approach. Inhibition of HA synthesis increases glycolysis, BAT respiration and uncoupling protein 1 expression. In addition, we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 4-MU, a clinically approved prescription-free drug, could be repurposed to treat obesity and diabetes.


Subject(s)
Adipose Tissue, Brown/drug effects , Hymecromone/pharmacology , Thermogenesis/drug effects , Animals , Energy Metabolism , Insulin Resistance , Male , Mice , Mice, Inbred C57BL
8.
Proc Natl Acad Sci U S A ; 116(14): 6985-6994, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30886104

ABSTRACT

Diabetic foot ulcerations (DFUs) represent a major medical, social, and economic problem. Therapeutic options are restricted due to a poor understanding of the pathogenic mechanisms. The Notch pathway plays a pivotal role in cell differentiation, proliferation, and angiogenesis, processes that are profoundly disturbed in diabetic wounds. Notch signaling is activated upon interactions between membrane-bound Notch receptors (Notch 1-4) and ligands (Jagged 1-2 and Delta-like 1, 3, 4), resulting in cell-context-dependent outputs. Here, we report that Notch1 signaling is activated by hyperglycemia in diabetic skin and specifically impairs wound healing in diabetes. Local inhibition of Notch1 signaling in experimental wounds markedly improves healing exclusively in diabetic, but not in nondiabetic, animals. Mechanistically, high glucose levels activate a specific positive Delta-like 4 (Dll4)-Notch1 feedback loop. Using loss-of-function genetic approaches, we demonstrate that Notch1 inactivation in keratinocytes is sufficient to cancel the repressive effects of the Dll4-Notch1 loop on wound healing in diabetes, thus making Notch1 signaling an attractive locally therapeutic target for the treatment of DFUs.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Foot/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptor, Notch1/metabolism , Signal Transduction , Wound Healing , Adaptor Proteins, Signal Transducing , Aged , Animals , Calcium-Binding Proteins , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetic Foot/genetics , Diabetic Foot/pathology , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Membrane Proteins/genetics , Mice , Receptor, Notch1/genetics
9.
Science ; 363(6434)2019 03 29.
Article in English | MEDLINE | ID: mdl-30923196

ABSTRACT

Bacteriophage are abundant at sites of bacterial infection, but their effects on mammalian hosts are unclear. We have identified pathogenic roles for filamentous Pf bacteriophage produced by Pseudomonas aeruginosa (Pa) in suppression of immunity against bacterial infection. Pf promote Pa wound infection in mice and are associated with chronic human Pa wound infections. Murine and human leukocytes endocytose Pf, and internalization of this single-stranded DNA virus results in phage RNA production. This triggers Toll-like receptor 3 (TLR3)- and TIR domain-containing adapter-inducing interferon-ß (TRIF)-dependent type I interferon production, inhibition of tumor necrosis factor (TNF), and the suppression of phagocytosis. Conversely, immunization of mice against Pf prevents Pa wound infection. Thus, Pf triggers maladaptive innate viral pattern-recognition responses, which impair bacterial clearance. Vaccination against phage virions represents a potential strategy to prevent bacterial infection.


Subject(s)
Immune Tolerance , Phagocytosis/immunology , Pseudomonas Infections/immunology , Pseudomonas Phages/physiology , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/virology , Wound Infection/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Animals , Antibodies, Viral/immunology , Humans , Interferons/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Pseudomonas Phages/immunology , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Tumor Necrosis Factor-alpha/metabolism
10.
Matrix Biol ; 80: 46-58, 2019 07.
Article in English | MEDLINE | ID: mdl-30196101

ABSTRACT

Hyaluronan (HA), an extracellular matrix glycosaminoglycan, is implicated in the pathogenesis of both type 1 diabetes (T1D) as well as type 2 diabetes (T2D) and has been postulated to be increased in these diseases due to hyperglycemia. We have examined the serum and tissue distribution of HA in human subjects with T1D and T2D and in mouse models of these diseases and evaluated the relationship between HA levels and glycemic control. We found that serum HA levels are increased in T2D but not T1D independently of hemoglobin-A1c, C-peptide, body mass index, or time since diabetes diagnosis. HA is likewise increased in skeletal muscle in T2D subjects relative to non-diabetic controls. Analogous increases in serum and muscle HA are seen in diabetic db/db mice (T2D), but not in diabetic DORmO mice (T1D). Diabetes induced by the ß-cell toxin streptozotozin (STZ) lead to an increase in blood glucose but not to an increase in serum HA. These data indicate that HA levels are increased in multiple tissue compartments in T2D but not T1D independently of glycemic control. Given that T2D but not T1D is associated with systemic inflammation, these patterns are consistent with inflammatory factors and not hyperglycemia driving increased HA. Serum HA may have value as a biomarker of systemic inflammation in T2D.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Hyaluronic Acid/blood , Muscle, Skeletal/metabolism , Adult , Animals , Body Mass Index , C-Peptide/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Female , Glycated Hemoglobin/metabolism , Humans , Hyaluronic Acid/metabolism , Male , Mice , Streptozocin , Young Adult
11.
PLoS One ; 13(3): e0193084, 2018.
Article in English | MEDLINE | ID: mdl-29534073

ABSTRACT

OBJECTIVE: IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). METHODS: LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. RESULTS: The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. CONCLUSION: Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Experimental , Hepatocytes , Insulin-Like Growth Factor I/deficiency , Liver/metabolism , Skin , Wound Healing , Animals , Diabetes Complications/genetics , Diabetes Complications/metabolism , Diabetes Complications/pathology , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Insulin-Like Growth Factor I/metabolism , Liver/pathology , Mice , Mice, Knockout , Organ Specificity , Skin/injuries , Skin/metabolism , Skin/pathology
12.
J Diabetes Complications ; 31(1): 4-12, 2017 01.
Article in English | MEDLINE | ID: mdl-27839658

ABSTRACT

Diabetes mellitus is characterized by hyperglycemia and capillary hypoxia that causes excessive production of free radicals and impaired antioxidant defense, resulting in oxidative stress and diabetes complications such as impaired wound healing. We have previously shown that modified forms of tocotrienols possess beneficial effects on the biosynthesis of the mevalonate pathway lipids including increase in mitochondrial CoQ. The aim of this study is to investigate the effects of mono-epoxy-tocotrienol-α on in vitro and in vivo wound healing models as well as its effects on mitochondrial function. Gene profiling analysis and gene expression studies on HepG2 cells and human dermal fibroblasts were performed by microarray and qPCR, respectively. In vitro wound healing using human fibroblasts was studied by scratch assay and in vitro angiogenesis using human dermal microvascular endothelial cells was studied by the tube formation assay. In vivo wound healing was performed in the diabetic db/db mouse model. For the study of mitochondrial functions and oxygen consumption rate Seahorse XF-24 was employed. In vitro, significant increase in wound closure and cell migration (p<0.05) both in normal and high glucose and in endothelial tube formation (angiogenesis) (p<0.005) were observed. Microarray profiling analysis showed a 20-fold increase of KIF26A gene expression and 11-fold decrease of lanosterol synthase expression. Expression analysis by qPCR showed significant increase of the growth factors VEGFA and PDGFB. The epoxidated compound induced a significantly higher basal and reserve mitochondrial capacity in both HDF and HepG2 cells. Additionally, in vivo wound healing in db/db mice, demonstrated a small but significant enhancement on wound healing upon local application of the compound compared to treatment with vehicle alone. Mono-epoxy-tocotrienol-α seems to possess beneficial effects on wound healing by increasing the expression of genes involved in cell growth, motility and angiogenes as well as on mitochondrial function.


Subject(s)
Cell Movement/drug effects , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/physiopathology , Neovascularization, Physiologic/drug effects , Tocotrienols/pharmacology , Wound Healing/drug effects , Animals , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/physiology , Fibroblasts/drug effects , Fibroblasts/physiology , Hep G2 Cells , Humans , Mice , Mice, Inbred C57BL , Skin/cytology , Skin/drug effects , Tocotrienols/chemistry
13.
J Clin Invest ; 125(10): 3928-40, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26368307

ABSTRACT

We recently reported that abundant deposits of the extracellular matrix polysaccharide hyaluronan (HA) are characteristic of autoimmune insulitis in patients with type 1 diabetes (T1D), but the relevance of these deposits to disease was unclear. Here, we have demonstrated that HA is critical for the pathogenesis of autoimmune diabetes. Using the DO11.10xRIPmOVA mouse model of T1D, we determined that HA deposits are temporally and anatomically associated with the development of insulitis. Moreover, treatment with an inhibitor of HA synthesis, 4-methylumbelliferone (4-MU), halted progression to diabetes even after the onset of insulitis. Similar effects were seen in the NOD mouse model, and in these mice, 1 week of treatment was sufficient to prevent subsequent diabetes. 4-MU reduced HA accumulation, constrained effector T cells to nondestructive insulitis, and increased numbers of intraislet FOXP3+ Tregs. Consistent with the observed effects of 4-MU treatment, Treg differentiation was inhibited by HA and anti-CD44 antibodies and rescued by 4-MU in an ERK1/2-dependent manner. These data may explain how peripheral immune tolerance is impaired in tissues under autoimmune attack, including islets in T1D. We propose that 4-MU, already an approved drug used to treat biliary spasm, could be repurposed to prevent, and possibly treat, T1D in at-risk individuals.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Extracellular Matrix/metabolism , Hyaluronic Acid/metabolism , Hymecromone/therapeutic use , Immune Tolerance/drug effects , Prediabetic State/drug therapy , Animals , Cell Differentiation/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/prevention & control , Disease Models, Animal , Disease Progression , Extracellular Matrix/pathology , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/immunology , Hyaluronic Acid/analysis , Hyaluronic Acid/antagonists & inhibitors , Hyaluronic Acid/pharmacology , Hymecromone/pharmacology , Hyperglycemia/metabolism , Hyperglycemia/pathology , Insulin/biosynthesis , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Transgenic , Prediabetic State/genetics , Prediabetic State/metabolism , Prediabetic State/pathology , Receptors, Leptin/deficiency , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
14.
Wound Repair Regen ; 23(1): 98-103, 2015.
Article in English | MEDLINE | ID: mdl-25532619

ABSTRACT

Hyperbaric oxygen (HBO) therapy has been used as an adjunctive therapy for diabetic foot ulcers, although its mechanism of action is not completely understood. Recently, it has been shown that HBO mobilizes the endothelial progenitor cells (EPCs) from bone marrow that eventually will aggregate in the wound. However, the gathering of the EPCs in diabetic wounds is impaired because of the decreased levels of local stromal-derived factor-1α (SDF-1α). Therefore, we investigated the influence of HBO on hypoxia-inducible factor 1 (HIF-1), which is a central regulator of SDF-1α and is down-regulated in diabetic wounds. The effects of HBO on HIF-1α function were studied in human dermal fibroblasts, SKRC7 cells, and HIF-1α knock-out and wild-type mouse embryonic fibroblasts using appropriate techniques (Western blot, quantitative polymerase chain reaction, and luciferase hypoxia-responsive element reporter assay). Cellular proliferation was assessed using H(3) -thymidine incorporation assay. The effect of HIF in combination with HBOT was tested by inoculating stable HIF-1α-expressing adenovirus (Adv-HIF) into experimental wounds in db/db mice exposed to HBO. HBO activates HIF-1α at several levels by increasing both HIF-1α stability (by a non-canonical mechanism) and activity (as shown both by induction of relevant target genes and by a specific reporter assay). HIF-1α induction has important biological relevance because the induction of fibroblast proliferation in HBO disappears when HIF-1α is knocked down. Moreover, the local transfer of stable HIF-1α-expressing adenovirus (Adv-HIF) into experimental wounds in diabetic (db/db mice) animals has an additive effect on HBO-mediated improvements in wound healing. In conclusion, HBO stabilizes and activates HIF-1, which contributes to increased cellular proliferation. In diabetic animals, the local transfer of active HIF further improves the effects of HBO on wound healing.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Diabetic Foot/pathology , Hyperbaric Oxygenation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/pathology , Wound Healing , Animals , Cell Proliferation , Diabetic Foot/metabolism , Hypoxia/metabolism , Male , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic
16.
Diabetes Care ; 36(2): 415-21, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22991450

ABSTRACT

OBJECTIVE: Hypoxia plays a major pathogenic role in diabetic nephropathy (DN). We have investigated in this study the effect of hypoxia-inducible factor 1 α subunit (HIF1A) genetic polymorphisms on the development of DN. RESEARCH DESIGN AND METHODS: In 1,165 American type 1 diabetic patients with and without DN selected from the Genetics of Kidneys in Diabetes (GoKinD) study, the HIF1A genetic polymorphisms were genotyped with TaqMan allelic discrimination. The regulation of HIF-1α in the kidneys of diabetic mice was appreciated by immunohistochemistry, and the effect HIF1A Pro582Ser polymorphism on HIF-1α sensitivity to glucose was evaluated in vitro. RESULTS: We identified a protective association between HIF1A Pro582Ser polymorphism and DN in male subjects. We also provided mechanistic insights that HIF-1α is repressed in the medulla of diabetic mice despite hypoxia and that Pro582Ser polymorphism confers less sensitivity to the inhibitory effect of glucose during a hypoxic challenge. CONCLUSIONS: The current study demonstrates for the first time that HIF1A Pro582Ser polymorphism has an effect on DN, possibly by conferring a relative resistance to the repressive effect of glucose on HIF-1α.


Subject(s)
Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , Polymorphism, Single Nucleotide/genetics , Adult , Cell Line , Female , Genotype , Humans , Immunohistochemistry , Male , Middle Aged
17.
Amino Acids ; 43(1): 127-34, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22451275

ABSTRACT

Diabetes mellitus (DM) is a progressive disorder with severe late complications. Normal wound healing involves a series of complex and well-orchestrated molecular events dictated by multiple factors. In diabetes, wound healing is grossly impaired due to defective, and dysregulated cellular and molecular events at all phases of wound healing resulting in chronic wounds that fail to heal. Carnosine, a dipeptide of alanine and histidine and an endogenous antioxidant is documented to accelerate healing of wounds and ulcers. However, not much is known about its role in wound healing in diabetes. Therefore, we studied the effect of carnosine in wound healing in db/db mice, a mice model of Type 2 DM. Six millimeter circular wounds were made in db/db mice and analyzed for wound healing every other day. Carnosine (100 mg/kg) was injected (I.P.) every day and also applied locally. Treatment with carnosine enhanced wound healing significantly, and wound tissue analysis showed increased expression of growth factors and cytokines genes involved in wound healing. In vitro studies with human dermal fibroblasts and microvascular-endothelial cells showed that carnosine increases cell viability in presence of high glucose. These effects, in addition to its known role as an antioxidant and a precursor for histamine synthesis, provide evidence for a possible therapeutic use of carnosine in diabetic wound healing.


Subject(s)
Carnosine/pharmacology , Diabetes Mellitus, Type 2/physiopathology , Wound Healing/drug effects , Animals , Cell Line , Cytokines/biosynthesis , Diabetes Mellitus, Experimental/physiopathology , Disease Models, Animal , Humans , Intercellular Signaling Peptides and Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Random Allocation , Skin/drug effects , Skin/injuries
18.
Electromagn Biol Med ; 30(2): 80-5, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21591892

ABSTRACT

The aim of this study was to test if an extremely weak 1 GHz electromagnetic field (EMF), known to be in resonance with clusters of water molecules, has biological effects on human fibroblasts. We demonstrated that in an in vitro model of wound healing, this EMF can activate fibroblast migration. [(3)H]thymidine incorporation experiments demonstrated that the EMF could also activate fibroblast proliferation. Activation of the expression of human fibroblast growth factor 1 (HFGF1) after EMF exposure showed that molecular wound healing pathways are activated in response to this water-resonant EMF.


Subject(s)
Cell Movement/radiation effects , Electromagnetic Fields , Fibroblasts/cytology , Fibroblasts/radiation effects , Cell Proliferation/radiation effects , Cells, Cultured , Dose-Response Relationship, Radiation , Fibroblast Growth Factor 1/genetics , Fibroblasts/metabolism , Gene Expression Regulation/radiation effects , Humans , Vascular Endothelial Growth Factor A/genetics , Water , Wound Healing/radiation effects
19.
Epigenetics ; 6(4): 405-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21474992

ABSTRACT

We have investigated promoter methylation of the Insr, Igf1 and Igf1r genes in skeletal and cardiac muscles of normal and diabetic db/db mice. No differences in Insr promoter methylation were found in the heart and skeletal muscles and no methylation was detected in the Igf1 promoter in skeletal muscle. In skeletal muscle, db/db males exhibited a 7.4-fold increase in Igf1r promoter methylation, which was accompanied by a 1.8-fold decrease in Igf1r mRNA levels, compared with controls. More than 50% of the detected methylation events were concentrated within an 18 bp sequence that includes one of the Sp1 binding sites. We conclude that the methylation level and pattern of the Igf1r promoter in skeletal muscle is related to gender and the diabetic state.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Promoter Regions, Genetic , Receptor, IGF Type 1/genetics , Receptor, Insulin/genetics , Animals , Binding Sites , Diabetes Mellitus, Experimental/genetics , Female , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Receptor, IGF Type 1/chemistry , Receptor, Insulin/chemistry , Sex Factors
20.
Diabetes Metab Res Rev ; 27(5): 470-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21484980

ABSTRACT

BACKGROUND: Increased production of reactive oxygen species (ROS) in mitochondria has been proposed as the pathogenic mechanism for chronic complications of diabetes. Mitochondrial DNA (mtDNA) is more vulnerable to reactive oxygen species. However, there are few data on the mitochondrial DNA damage in diabetes and these are available only from patients with different duration of the disease and tissues not relevant to the chronic complications of diabetes. We therefore proposed to study the stability of mitochondrial DNA under controlled experimental conditions, to understand its contribution to chronic complications of diabetes. METHODS: The mitochondrial DNA damage was evaluated by long-fragment polymerase chain reaction in human dermal fibroblasts exposed to high glucose level and hypoxia (an additional source of reactive oxygen species) or in organs from diabetic animals (db/db mice) at different ages. Reactive oxygen species production was assessed in vitro by fluorescence and in vivo by nitrosylation of the proteins. The antioxidant enzymes were assessed by enzyme activity and by quantitative real-time polymerase chain reaction while the mitochondrial repair activity (base excision repair) was determined by using abasic site-containing oligonucleotides as substrates. RESULTS: Hyperglycaemia, when combined with hypoxia, is able to induce mitochondrial DNA damage in human dermal fibroblasts. The deleterious effect is mediated by mitochondrial reactive oxygen species, being abolished when the mitochondria electron transport is blocked. The accumulation of mitochondrial DNA damage in vivo is, however, decreased in 'old' diabetic animals (db/db) despite higher reactive oxygen species levels. This mitochondrial DNA protection might be conferred by an increased base excision repair activity. CONCLUSION: Increased base excision repair activity in tissues affected by the chronic complications of diabetes is a potential mechanism that can overcome mitochondrial DNA damage induced by hyperglycaemia-related reactive oxygen species overproduction.


Subject(s)
DNA, Mitochondrial/genetics , Reactive Oxygen Species/metabolism , Aging/genetics , Animals , Cells, Cultured , DNA Damage , DNA Repair , DNA, Mitochondrial/drug effects , Humans , Hyperglycemia/physiopathology , Hypoxia/physiopathology , Kidney/metabolism , Mice , Myocardium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...