ABSTRACT
BACKGROUND: Beta-cardiotoxin (ß-CTX), the three-finger toxin isolated from king cobra (Ophiophagus hannah) venom, possesses ß-blocker activity as indicated by its negative chronotropy and its binding property to both ß-1 and ß-2 adrenergic receptors and has been proposed as a novel ß-blocker candidate. Previously, ß-CTX was isolated and purified by FPLC. Here, we present an alternative method to purify this toxin. In addition, we tested its cytotoxicity against different mammalian muscle cell types and determined the impact on cardiac function in isolated cardiac myocyte so as to provide insights into the pharmacological action of this protein. METHODS: ß-CTX was isolated from the crude venom of the Thai king cobra using reverse-phased and cation exchange HPLC. In vitro cellular viability MTT assays were performed on mouse myoblast (C2C12), rat smooth muscle (A7r5), and rat cardiac myoblast (H9c2) cells. Cell shortening and calcium transient dynamics were recorded on isolated rat cardiac myocytes over a range of ß-CTX concentration. RESULTS: Purified ß-CTX was recovered from crude venom (0.53% w/w). MTT assays revealed 50% cytotoxicity on A7r5 cells at 9.41 ± 1.14 µM (n = 3), but no cytotoxicity on C2C12 and H9c2 cells up to 114.09 µM. ß-CTX suppressed the extend of rat cardiac cell shortening in a dose-dependent manner; the half-maximal inhibition concentration was 95.97 ± 50.10 nM (n = 3). In addition, the rates of cell shortening and re-lengthening were decreased in ß-CTX treated myocytes concomitant with a prolongation of the intracellular calcium transient decay, indicating depression of cardiac contractility secondary to altered cardiac calcium homeostasis. CONCLUSION: We present an alternative purification method for ß-CTX from king cobra venom. We reveal cytotoxicity towards smooth muscle and depression of cardiac contractility by this protein. These data are useful to aid future development of pharmacological agents derived from ß-CTX.
ABSTRACT
Beta-cardiotoxin (ß-CTX), the three-finger toxin isolated from king cobra (Ophiophagus hannah) venom, possesses ß-blocker activity as indicated by its negative chronotropy and its binding property to both ß-1 and ß-2 adrenergic receptors and has been proposed as a novel ß-blocker candidate. Previously, ß-CTX was isolated and purified by FPLC. Here, we present an alternative method to purify this toxin. In addition, we tested its cytotoxicity against different mammalian muscle cell types and determined the impact on cardiac function in isolated cardiac myocyte so as to provide insights into the pharmacological action of this protein. Methods: ß-CTX was isolated from the crude venom of the Thai king cobra using reverse-phased and cation exchange HPLC. In vitro cellular viability MTT assays were performed on mouse myoblast (C2C12), rat smooth muscle (A7r5), and rat cardiac myoblast (H9c2) cells. Cell shortening and calcium transient dynamics were recorded on isolated rat cardiac myocytes over a range of ß-CTX concentration. Results: Purified ß-CTX was recovered from crude venom (0.53% w/w). MTT assays revealed 50% cytotoxicity on A7r5 cells at 9.41 ± 1.14 µM (n = 3), but no cytotoxicity on C2C12 and H9c2 cells up to 114.09 µM. ß-CTX suppressed the extend of rat cardiac cell shortening in a dose-dependent manner; the half-maximal inhibition concentration was 95.97 ± 50.10 nM (n = 3). In addition, the rates of cell shortening and re-lengthening were decreased in ß-CTX treated myocytes concomitant with a prolongation of the intracellular calcium transient decay, indicating depression of cardiac contractility secondary to altered cardiac calcium homeostasis. Conclusion: We present an alternative purification method for ß-CTX from king cobra venom. We reveal cytotoxicity towards smooth muscle and depression of cardiac contractility by this protein. These data are useful to aid future development of pharmacological agents derived from ß-CTX.(AU)
Subject(s)
Animals , Elapid Venoms/analysis , Elapid Venoms/isolation & purification , Myocytes, Cardiac/physiology , Cardiotoxins/administration & dosageABSTRACT
Beta-cardiotoxin (ß-CTX), the three-finger toxin isolated from king cobra (Ophiophagus hannah) venom, possesses ß-blocker activity as indicated by its negative chronotropy and its binding property to both ß-1 and ß-2 adrenergic receptors and has been proposed as a novel ß-blocker candidate. Previously, ß-CTX was isolated and purified by FPLC. Here, we present an alternative method to purify this toxin. In addition, we tested its cytotoxicity against different mammalian muscle cell types and determined the impact on cardiac function in isolated cardiac myocyte so as to provide insights into the pharmacological action of this protein. Methods: ß-CTX was isolated from the crude venom of the Thai king cobra using reverse-phased and cation exchange HPLC. In vitro cellular viability MTT assays were performed on mouse myoblast (C2C12), rat smooth muscle (A7r5), and rat cardiac myoblast (H9c2) cells. Cell shortening and calcium transient dynamics were recorded on isolated rat cardiac myocytes over a range of ß-CTX concentration. Results: Purified ß-CTX was recovered from crude venom (0.53% w/w). MTT assays revealed 50% cytotoxicity on A7r5 cells at 9.41 ± 1.14 µM (n = 3), but no cytotoxicity on C2C12 and H9c2 cells up to 114.09 µM. ß-CTX suppressed the extend of rat cardiac cell shortening in a dose-dependent manner; the half-maximal inhibition concentration was 95.97 ± 50.10 nM (n = 3). In addition, the rates of cell shortening and re-lengthening were decreased in ß-CTX treated myocytes concomitant with a prolongation of the intracellular calcium transient decay, indicating depression of cardiac contractility secondary to altered cardiac calcium homeostasis. Conclusion: We present an alternative purification method for ß-CTX from king cobra venom. We reveal cytotoxicity towards smooth muscle and depression of cardiac contractility by this protein. These data are useful to aid future development of pharmacological agents derived from ß-CTX.(AU)
Subject(s)
Animals , Charybdotoxin/isolation & purification , Myocytes, Cardiac , Cobra Cardiotoxin Proteins , Elapid Venoms , Cardiotoxins , Ophiophagus hannah , Suppression , Cytotoxicity, ImmunologicABSTRACT
Envenomation by the Venezuelan bushmaster snake (Lachesis muta muta) (Serpentes: Viperidae) is characterized by local and cardiac alterations. This study investigates the in vivo cardiac dysfunction, tissue destruction, and cellular processes triggered by Lachesis muta muta snake crude venom and a C-type lectin (CTL)-like toxin named Mutacytin-1 (MC-1). The 28 kDa MC-1 was obtained by molecular exclusion, ion exchange, and C-18 (checking pureness) reverse-phase chromatographies. N-terminal sequencing of the first eight amino acids (NNCPQ LLM) revealed 100% identity with Mutina (CTL-like) isolated from Lachesis stenophrys, which is a Ca2+-dependent-type galactoside-binding lectin from Bothrops jararaca and CTL BpLec from Bothrops pauloensis. The cardiotoxicity in zebrafish of MC-1 was evaluated by means of specific phenotypic expressions and larvae behavior at 5, 15, 30, 40 and 60 min post-treatment. The L. muta muta venom and MC-1 also produced heart rate/rhythm alterations, circulation modifications, and the presence of thrombus and apoptotic phenomenon with pericardial damages. Acridine orange (100 µg/mL) was used to visualize apoptosis cellular process in control and treated whole embryos. The cardiotoxic alterations happened in more than 90% of all larvae under the action of L. muta muta venom and MC-1. The findings have demonstrated the potential cardiotoxicity by L. muta muta venom, suggesting the possibility of cardiovascular damages to patients after bushmaster envenoming.
Subject(s)
Cardiotoxicity/embryology , Cardiotoxins/pharmacology , Crotalinae , Lectins, C-Type , Reptilian Proteins/chemistry , Snake Venoms/chemistry , Zebrafish/embryology , Animals , Cardiotoxins/chemistry , Crotalinae/embryology , Embryo, Nonmammalian/drug effects , Lectins, C-Type/chemistry , Reptilian Proteins/pharmacologyABSTRACT
BACKGROUND: Bothrops colombiensis is a highly dangerous pit viper and responsible for over 70% of snakebites in Venezuela. Although the composition in B. colombiensis venom has been identified using a proteome analysis, the venom gland transcriptome is currently lacking. RESULTS: We constructed a cDNA library from the venom gland of B. colombiensis, and a set of 729 high quality expressed sequence tags (ESTs) was identified. A total number of 344 ESTs (47.2% of total ESTs) was related to toxins. The most abundant toxin transcripts were metalloproteinases (37.5%), phospholipases A2s (PLA2, 29.7%), and serine proteinases (11.9%). Minor toxin transcripts were linked to waprins (5.5%), C-type lectins (4.1%), ATPases (2.9%), cysteine-rich secretory proteins (CRISP, 2.3%), snake venom vascular endothelium growth factors (svVEGF, 2.3%), L-amino acid oxidases (2%), and other putative toxins (1.7%). While 160 ESTs (22% of total ESTs) coded for translation proteins, regulatory proteins, ribosomal proteins, elongation factors, release factors, metabolic proteins, and immune response proteins. Other proteins detected in the transcriptome (87 ESTs, 11.9% of total ESTs) were undescribed proteins with unknown functions. The remaining 138 (18.9%) cDNAs had no match with known GenBank accessions. CONCLUSION: This study represents the analysis of transcript expressions and provides a physical resource of unique genes for further study of gene function and the development of novel molecules for medical applications.
Subject(s)
Bothrops/genetics , Transcriptome , Venoms/genetics , Amino Acid Sequence , Animals , Computational Biology/methods , Databases, Genetic , Expressed Sequence Tags , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Multigene Family , Open Reading Frames , Sequence Alignment , Venoms/chemistry , Venoms/classificationABSTRACT
Disintegrins represent a family of effective cell-cell and cell-matrix inhibitors by binding to integrin receptors. Integrins are heterodimeric, transmembrane receptors that are the bridges for these cell interactions. Disintegrins have been shown to have many therapeutic implications for the treatment of strokes, heart attacks, and cancer. Two novel heterodimeric disintegrins were isolated from the venom of the broad-banded copperhead (Agkistrodon contortrix laticinctus). Crude venom separated by cation-exchange chromatography resulted in several fractions possessing hemorrhagic, fibrinolytic, gelatinase, and platelet activities. Venom fractions 2-3 and 17-19 showed fibrinolytic activity. Fractions 2-6, 8-11, and 16-21 had hemorrhagic activity. Gelatinase activity was found in fractions 3, 11, and 19. The isolation of laticinstatins 1 and 2 was accomplished by fractionating crude venom using reverse phase chromatography. Data from both SDS-PAGE and N-terminal sequencing determined that laticinstatins 1 and 2 were heterodimeric disintegrins, and both were assayed for their ability to inhibit platelet aggregation in human whole blood. Future functional evaluation of snake venom disintegrins shows considerable promise for elucidating the biochemical mechanisms of integrin-ligand interactions that will allow the development of adequate medications for hemostatic pathologies such as thrombosis, stroke, and cerebral and cardiac accidents. In this study, we are presenting the first report of the purification, and partial characterization of two new dimeric disintegrins isolated from the venom of broad-banded copperhead snakes.
ABSTRACT
The Tamaulipan rock rattlesnake (Crotalus lepidus morulus) is a montane snake that occurs in the humid pine-oak forest and the upper cloud forest of the Sierra Madre Oriental in southwestern Tamaulipas, central Nuevo Leon, and southeastern Coahuila in Mexico. Venom from this rattlesnake was fractionated by High-Performance Liquid Chromatography for the purpose of discovering disintegrin molecules. Disintegrins are non-enzymatic, small molecular weight peptides that interfere with cell-cell and cell-matrix interactions by binding to various cell receptors. Eleven fractions were collected by anion exchange chromatography and pooled into six groups (I, II, III, IV, V, and VI). Proteins of the six groups were analyzed by SDS-PAGE and western blot using antibodies raised against a disintegrin. The antibodies recognized different protein bands in five (II, III, IV, V, and VI) of six groups in a molecular mass range of 7 to 105 kDa. Western blot analysis revealed fewer protein bands in the higher molecular mass range and two bands in the disintegrin weight range in group II compared with the other four groups. Proteins in group II were further separated into nine fractions using reverse phase C18 chromatography. Fraction 4 inhibited platelet aggregation and was named morulustatin, which exhibited a single band with a molecular mass of approximately 7 kDa. Mass spectrometry analysis of fraction 4 revealed the identification of disintegrin peptides LRPGAQCADGLCCDQCR (MH+ 2035.84) and AGEECDCGSPANCCDAATCK (MH+ 2328.82). Morulustatin inhibited ADP-induced platelet aggregation in human whole blood and was concentration-dependent with an IC50 of 89.5 nM ± 12.