Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Biochemistry (Mosc) ; 89(3): 487-506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648768

ABSTRACT

Lapatinib is a targeted therapeutic inhibiting HER2 and EGFR proteins. It is used for the therapy of HER2-positive breast cancer, although not all the patients respond to it. Using human blood serum samples from 14 female donors (separately taken or combined), we found that human blood serum dramatically abolishes the lapatinib-mediated inhibition of growth of the human breast squamous carcinoma SK-BR-3 cell line. This antagonism between lapatinib and human serum was associated with cancelation of the drug induced G1/S cell cycle transition arrest. RNA sequencing revealed 308 differentially expressed genes in the presence of lapatinib. Remarkably, when combined with lapatinib, human blood serum showed the capacity of restoring both the rate of cell growth, and the expression of 96.1% of the genes expression of which were altered by the lapatinib treatment alone. Co-administration of EGF with lapatinib also restores the cell growth and cancels alteration of expression of 95.8% of the genes specific to lapatinib treatment of SK-BR-3 cells. Differential gene expression analysis also showed that in the presence of human serum or EGF, lapatinib was unable to inhibit the Toll-Like Receptor signaling pathway and alter expression of genes linked to the Gene Ontology term of Focal adhesion.


Subject(s)
Cell Proliferation , ErbB Receptors , Lapatinib , Receptor, ErbB-2 , Humans , Lapatinib/pharmacology , Receptor, ErbB-2/metabolism , ErbB Receptors/metabolism , Female , Cell Line, Tumor , Cell Proliferation/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Serum/metabolism
2.
Cells ; 12(16)2023 08 08.
Article in English | MEDLINE | ID: mdl-37626832

ABSTRACT

Regardless of the presence or absence of specific diagnostic mutations, many cancer patients fail to respond to EGFR-targeted therapeutics, and a personalized approach is needed to identify putative (non)responders. We found previously that human peripheral blood and EGF can modulate the activities of EGFR-specific drugs on inhibiting clonogenity in model EGFR-positive A431 squamous carcinoma cells. Here, we report that human serum can dramatically abolish the cell growth rate inhibition by EGFR-specific drugs cetuximab and erlotinib. We show that this phenomenon is linked with derepression of drug-induced G1S cell cycle transition arrest. Furthermore, A431 cell growth inhibition by cetuximab, erlotinib, and EGF correlates with a decreased activity of ERK1/2 proteins. In turn, the EGF- and human serum-mediated rescue of drug-treated A431 cells restores ERK1/2 activity in functional tests. RNA sequencing revealed 1271 and 1566 differentially expressed genes (DEGs) in the presence of cetuximab and erlotinib, respectively. Erlotinib- and cetuximab-specific DEGs significantly overlapped. Interestingly, the expression of 100% and 75% of these DEGs restores to the no-drug level when EGF or a mixed human serum sample, respectively, is added along with cetuximab. In the case of erlotinib, EGF and human serum restore the expression of 39% and 83% of DEGs, respectively. We further assessed differential molecular pathway activation levels and propose that EGF/human serum-mediated A431 resistance to EGFR drugs can be largely explained by reactivation of the MAPK signaling cascade.


Subject(s)
Carcinoma, Squamous Cell , Serum , Humans , Cetuximab/pharmacology , Cetuximab/therapeutic use , Epidermal Growth Factor/pharmacology , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Cell Cycle , ErbB Receptors
3.
Comput Struct Biotechnol J ; 21: 3964-3986, 2023.
Article in English | MEDLINE | ID: mdl-37635765

ABSTRACT

Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived "healthy" normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min - 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact "differential" expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice.

4.
Cells ; 12(9)2023 05 02.
Article in English | MEDLINE | ID: mdl-37174700

ABSTRACT

The evolution of protein-coding genes has both structural and regulatory components. The first can be assessed by measuring the ratio of non-synonymous to synonymous nucleotide substitutions. The second component can be measured as the normalized proportion of transposable elements that are used as regulatory elements. For the first time, we characterized in parallel the regulatory and structural evolutionary profiles for 10,890 human genes and 2972 molecular pathways. We observed a ~0.1 correlation between the structural and regulatory metrics at the gene level, which appeared much higher (~0.4) at the pathway level. We deposited the data in the publicly available database RetroSpect. We also analyzed the evolutionary dynamics of six cancer pathways of two major axes: Notch/WNT/Hedgehog and AKT/mTOR/EGFR. The Hedgehog pathway had both components slower, whereas the Akt pathway had clearly accelerated structural evolution. In particular, the major hub nodes Akt and beta-catenin showed both components strongly decreased, whereas two major regulators of Akt TCL1 and CTMP had outstandingly high evolutionary rates. We also noticed structural conservation of serine/threonine kinases and the genes related to guanosine metabolism in cancer signaling: GPCRs, G proteins, and small regulatory GTPases (Src, Rac, Ras); however, this was compensated by the accelerated regulatory evolution.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Hedgehog Proteins/metabolism , Signal Transduction/genetics , Protein Serine-Threonine Kinases/metabolism , Neoplasms/genetics
5.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769365

ABSTRACT

Radioresistance is a major obstacle for the successful therapy of many cancers, including non-small cell lung cancer (NSCLC). To elucidate the mechanism of radioresistance of NSCLC cells and to identify key molecules conferring radioresistance, the radioresistant subclones of p53 wild-type A549 and p53-deficient H1299 cell cultures were established. The transcriptional changes between parental and radioresistant NSCLC cells were investigated by RNA-seq. In total, expression levels of 36,596 genes were measured. Changes in the activation of intracellular molecular pathways of cells surviving irradiation relative to parental cells were quantified using the Oncobox bioinformatics platform. Following 30 rounds of 2 Gy irradiation, a total of 322 genes were differentially expressed between p53 wild-type radioresistant A549IR and parental A549 cells. For the p53-deficient (H1299) NSCLC cells, the parental and irradiated populations differed in the expression of 1628 genes and 1616 pathways. The expression of genes associated with radioresistance reflects the complex biological processes involved in clinical cancer cell eradication and might serve as a potential biomarker and therapeutic target for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Lung Neoplasms/metabolism , Transcriptome , Tumor Suppressor Protein p53/metabolism , A549 Cells , Radiation Tolerance/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
6.
DNA Repair (Amst) ; 123: 103448, 2023 03.
Article in English | MEDLINE | ID: mdl-36657260

ABSTRACT

DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Apoptosis , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , DNA Damage , DNA Repair , G2 Phase Cell Cycle Checkpoints/genetics , Neoplasms/genetics , Proteomics , Tumor Suppressor Protein p53/metabolism
7.
BMC Cancer ; 22(1): 1113, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36316649

ABSTRACT

BACKGROUND: Overall survival of advanced colorectal cancer (CRC) patients remains poor, and gene expression analysis could potentially complement detection of clinically relevant mutations to personalize CRC treatments. METHODS: We performed RNA sequencing of formalin-fixed, paraffin-embedded (FFPE) cancer tissue samples of 23 CRC patients and interpreted the data obtained using bioinformatic method Oncobox for expression-based rating of targeted therapeutics. Oncobox ranks cancer drugs according to the efficiency score calculated using target genes expression and molecular pathway activation data. The patients had primary and metastatic CRC with metastases in liver, peritoneum, brain, adrenal gland, lymph nodes and ovary. Two patients had mutations in NRAS, seven others had mutated KRAS gene. Patients were treated by aflibercept, bevacizumab, bortezomib, cabozantinib, cetuximab, crizotinib, denosumab, panitumumab and regorafenib as monotherapy or in combination with chemotherapy, and information on the success of totally 39 lines of therapy was collected. RESULTS: Oncobox drug efficiency score was effective biomarker that could predict treatment outcomes in the experimental cohort (AUC 0.77 for all lines of therapy and 0.91 for the first line after tumor sampling). Separately for bevacizumab, it was effective in the experimental cohort (AUC 0.87) and in 3 independent literature CRC datasets, n = 107 (AUC 0.84-0.94). It also predicted progression-free survival in univariate (Hazard ratio 0.14) and multivariate (Hazard ratio 0.066) analyses. Difference in AUC scores evidences importance of using recent biosamples for the prediction quality. CONCLUSION: Our results suggest that RNA sequencing analysis of tumor FFPE materials may be helpful for personalizing prescriptions of targeted therapeutics in CRC.


Subject(s)
Colorectal Neoplasms , RNA , Humans , Bevacizumab/therapeutic use , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Prescriptions , Proto-Oncogene Proteins p21(ras)/genetics , Sequence Analysis, RNA , Precision Medicine
8.
Biomedicines ; 10(8)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-36009413

ABSTRACT

Drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins demonstrate impressive anti-cancer activities. The fusion presence in the cancer is the respective drug prescription biomarker, but their identification is challenging as both the breakpoint and the exact fusion partners are unknown. RNAseq offers the advantage of finding both fusion parts by screening sequencing reads. Paraffin (FFPE) tissue blocks are the most common way of storing cancer biomaterials in biobanks. However, finding RTK fusions in FFPE samples is challenging as RNA fragments are short and their artifact ligation may appear in sequencing libraries. Here, we annotated RNAseq reads of 764 experimental FFPE solid cancer samples, 96 leukemia samples, and 2 cell lines, and identified 36 putative clinically relevant RTK fusions with junctions corresponding to exon borders of the fusion partners. Where possible, putative fusions were validated by RT-PCR (confirmed for 10/25 fusions tested). For the confirmed 3'RTK fusions, we observed the following distinguishing features. Both moieties were in-frame, and the tyrosine kinase domain was preserved. RTK exon coverage by RNAseq reads upstream of the junction site were lower than downstream. Finally, most of the true fusions were present by more than one RNAseq read. This provides the basis for automatic annotation of 3'RTK fusions using FFPE RNAseq profiles.

9.
Biomedicines ; 10(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36009461

ABSTRACT

Trastuzumab, a HER2-targeted antibody, is widely used for targeted therapy of HER2-positive breast cancer (BC) patients; yet, not all of them respond to this treatment. We investigated here whether trastuzumab activity on the growth of HER2-overexpressing BT474 cells may interfere with human peripheral blood endogenous factors. Among 33 individual BC patient blood samples supplemented to the media, BT474 sensitivity to trastuzumab varied up to 14 times. In the absence of trastuzumab, human peripheral blood serum samples could inhibit growth of BT474, and this effect varied ~10 times for 50 individual samples. In turn, the epidermal growth factor (EGF) suppressed the trastuzumab effect on BT474 cell growth. Trastuzumab treatment increased the proportion of BT474 cells in the G0/G1 phases of cell cycle, while simultaneous addition of EGF decreased it, yet not to the control level. We used RNA sequencing profiling of gene expression to elucidate the molecular mechanisms involved in EGF- and human-sera-mediated attenuation of the trastuzumab effect on BT474 cell growth. Bioinformatic analysis of the molecular profiles suggested that trastuzumab acts similarly to the inhibition of PI3K/Akt/mTOR signaling axis, and the mechanism of EGF suppression of trastuzumab activity may be associated with parallel activation of PKC and transcriptional factors ETV1-ETV5.

10.
Int J Mol Sci ; 23(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887076

ABSTRACT

Neuroblastoma (NB) is a pediatric cancer with high clinical and molecular heterogeneity, and patients with high-risk tumors have limited treatment options. Receptor tyrosine kinase KIT has been identified as a potential marker of high-risk NB and a promising target for NB treatment. We investigated 19,145 tumor RNA expression and molecular pathway activation profiles for 20 cancer types and detected relatively high levels of KIT expression in NB. Increased KIT expression was associated with activation of cell survival pathways, downregulated apoptosis induction, and cell cycle checkpoint control pathways. KIT knockdown with shRNA encoded by lentiviral vectors in SH-SY5Y cells led to reduced cell proliferation and apoptosis induction up to 50%. Our data suggest that apoptosis induction was caused by mitotic catastrophe, and there was a 2-fold decrease in percentage of G2-M cell cycle phase after KIT knockdown. We found that KIT knockdown in NB cells leads to strong upregulation of other pro-survival growth factor signaling cascades such as EPO, NGF, IL-6, and IGF-1 pathways. NGF, IGF-1 and EPO were able to increase cell proliferation in KIT-depleted cells in an ERK1/2-dependent manner. Overall, we show that KIT is a promising therapeutic target in NB, although such therapy efficiency could be impeded by growth factor signaling activation.


Subject(s)
Neuroblastoma , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Child , Gene Expression Regulation, Neoplastic , Humans , Insulin-Like Growth Factor I/metabolism , Nerve Growth Factor/metabolism , Neuroblastoma/metabolism , Signal Transduction
11.
Front Mol Biosci ; 9: 753318, 2022.
Article in English | MEDLINE | ID: mdl-35359606

ABSTRACT

Sorafenib is a tyrosine kinase inhibitory drug with multiple molecular specificities that is approved for clinical use in second-line treatments of metastatic and advanced renal cell carcinomas (RCCs). However, only 10-40% of RCC patients respond on sorafenib-containing therapies, and personalization of its prescription may help in finding an adequate balance of clinical efficiency, cost-effectiveness, and side effects. We investigated whether expression levels of known molecular targets of sorafenib in RCC can serve as prognostic biomarker of treatment response. We used Illumina microarrays to profile RNA expression in pre-treatment formalin-fixed paraffin-embedded (FFPE) samples of 22 metastatic or advanced RCC cases with known responses on next-line sorafenib monotherapy. Among them, nine patients showed partial response (PR), three patients-stable disease (SD), and 10 patients-progressive disease (PD) according to Response Evaluation Criteria In Solid Tumors (RECIST) criteria. We then classified PR + SD patients as "responders" and PD patients as "poor responders". We found that gene signature including eight sorafenib target genes was congruent with the drug response characteristics and enabled high-quality separation of the responders and poor responders [area under a receiver operating characteristic curve (AUC) 0.89]. We validated these findings on another set of 13 experimental annotated FFPE RCC samples (for 2 PR, 1 SD, and 10 PD patients) that were profiled by RNA sequencing and observed AUC 0.97 for 8-gene signature as the response classifier. We further validated these results in a series of qRT-PCR experiments on the third experimental set of 12 annotated RCC biosamples (for 4 PR, 3 SD, and 5 PD patients), where 8-gene signature showed AUC 0.83.

12.
Front Mol Biosci ; 8: 737821, 2021.
Article in English | MEDLINE | ID: mdl-34888350

ABSTRACT

Microsatellite instability (MSI) is an important diagnostic and prognostic cancer biomarker. In colorectal, cervical, ovarian, and gastric cancers, it can guide the prescription of chemotherapy and immunotherapy. In laboratory diagnostics of susceptible tumors, MSI is routinely detected by the size of marker polymerase chain reaction products encompassing frequent microsatellite expansion regions. Alternatively, MSI status is screened indirectly by immunohistochemical interrogation of microsatellite binding proteins. RNA sequencing (RNAseq) profiling is an emerging source of data for a wide spectrum of cancer biomarkers. Recently, three RNAseq-based gene signatures were deduced for establishing MSI status in tumor samples. They had 25, 15, and 14 gene products with only one common gene. However, they were developed and tested on the incomplete literature of The Cancer Genome Atlas (TCGA) sampling and never validated experimentally on independent RNAseq samples. In this study, we, for the first time, systematically validated these three RNAseq MSI signatures on the literature colorectal cancer (CRC) (n = 619), endometrial carcinoma (n = 533), gastric cancer (n = 380), uterine carcinosarcoma (n = 55), and esophageal cancer (n = 83) samples and on the set of experimental CRC RNAseq samples (n = 23) for tumors with known MSI status. We found that all three signatures performed well with area under the curve (AUC) ranges of 0.94-1 for the experimental CRCs and 0.94-1 for the TCGA CRC, esophageal cancer, and uterine carcinosarcoma samples. However, for the TCGA endometrial carcinoma and gastric cancer samples, only two signatures were effective with AUC 0.91-0.97, whereas the third signature showed a significantly lower AUC of 0.69-0.88. Software for calculating these MSI signatures using RNAseq data is included.

13.
Biochemistry (Mosc) ; 86(11): 1477-1488, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34906047

ABSTRACT

EGFR, BRAF, PIK3CA, and KRAS genes play major roles in EGFR pathway, and accommodate activating mutations that predict response to many targeted therapeutics. However, connections between these mutations and EGFR pathway expression patterns remain unexplored. Here, we investigated transcriptomic associations with these activating mutations in three ways. First, we compared expressions of these genes in the mutant and wild type tumors, respectively, using RNA sequencing profiles from The Cancer Genome Atlas project database (n = 3660). Second, mutations were associated with the activation level of EGFR pathway. Third, they were associated with the gene signatures of differentially expressed genes from these pathways between the mutant and wild type tumors. We found that the upregulated EGFR pathway was linked with mutations in the BRAF (thyroid cancer, melanoma) and PIK3CA (breast cancer) genes. Gene signatures were associated with BRAF (thyroid cancer, melanoma), EGFR (squamous cell lung cancer), KRAS (colorectal cancer), and PIK3CA (breast cancer) mutations. However, only for the BRAF gene signature in the thyroid cancer we observed strong biomarker diagnostic capacity with AUC > 0.7 (0.809). Next, we validated this signature on the independent literature-based dataset (n = 127, fresh-frozen tissue samples, AUC 0.912), and on the experimental dataset (n = 42, formalin fixed, paraffin embedded tissue samples, AUC 0.822). Our results suggest that the RNA sequencing profiles can be used for robust identification of the replacement of Valine at position 600 with Glutamic acid in the BRAF gene in the papillary subtype of thyroid cancer, and evidence that the specific gene expression levels could provide information about the driver carcinogenic mutations.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Melanoma , Mutation , Neoplasm Proteins , Signal Transduction/genetics , Thyroid Neoplasms , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
14.
Front Oncol ; 11: 732644, 2021.
Article in English | MEDLINE | ID: mdl-34650919

ABSTRACT

Tumor mutation burden (TMB) is a well-known efficacy predictor for checkpoint inhibitor immunotherapies. Currently, TMB assessment relies on DNA sequencing data. Gene expression profiling by RNA sequencing (RNAseq) is another type of analysis that can inform clinical decision-making and including TMB estimation may strongly benefit this approach, especially for the formalin-fixed, paraffin-embedded (FFPE) tissue samples. Here, we for the first time compared TMB levels deduced from whole exome sequencing (WES) and RNAseq profiles of the same FFPE biosamples in single-sample mode. We took TCGA project data with mean sequencing depth 23 million gene-mapped reads (MGMRs) and found 0.46 (Pearson)-0.59 (Spearman) correlation with standard mutation calling pipelines. This was converted into low (<10) and high (>10) TMB per megabase classifier with area under the curve (AUC) 0.757, and application of machine learning increased AUC till 0.854. We then compared 73 experimental pairs of WES and RNAseq profiles with lower (mean 11 MGMRs) and higher (mean 68 MGMRs) RNA sequencing depths. For higher depth, we observed ~1 AUC for the high/low TMB classifier and 0.85 (Pearson)-0.95 (Spearman) correlation with standard mutation calling pipelines. For the lower depth, the AUC was below the high-quality threshold of 0.7. Thus, we conclude that using RNA sequencing of tumor materials from FFPE blocks with enough coverage can afford for high-quality discrimination of tumors with high and low TMB levels in a single-sample mode.

15.
Front Oncol ; 11: 666001, 2021.
Article in English | MEDLINE | ID: mdl-34527573

ABSTRACT

Uterine leiomyosarcoma (UL) is a rare malignant tumor that develops from the uterine smooth muscle tissue. Due to the low frequency and lack of sufficient data from clinical trials there is currently no effective treatment that is routinely accepted for UL. Here we report a case of a 65-years-old female patient with metastatic UL, who progressed on ifosfamide and doxorubicin therapy and developed severe hypertensive crisis after administration of second line pazopanib, which lead to treatment termination. Rapid progression of the tumor stressed the need for the alternative treatment options. We performed RNA sequencing and whole exome sequencing profiling of the patient's biopsy and applied Oncobox bioinformatic algorithm to prioritize targeted therapeutics. No clinically relevant mutations associated with drug efficiencies were found, but the Oncobox transcriptome analysis predicted regorafenib as the most effective targeted treatment option. Regorafenib administration resulted in a complete metabolic response which lasted for 10 months. In addition, RNA sequencing analysis revealed a novel cancer fusion transcript of YWHAE gene with fusion partner JAZF1. Several chimeric transcripts for YWHAE and JAZF1 genes were previously found in uterine neoplasms and some of them were associated with tumor prognosis. However, their combination was detected in this study for the first time. Taken together, these findings evidence that RNA sequencing may complement analysis of clinically relevant mutations and enhance management of oncological patients by suggesting putative treatment options.

16.
Oncogene ; 40(44): 6258-6272, 2021 11.
Article in English | MEDLINE | ID: mdl-34556815

ABSTRACT

Neuroblastoma (NB) has a low frequency of recurrent mutations compared to other cancers, which hinders the development of targeted therapies and novel risk stratification strategies. Multikinase inhibitors have shown potential in treating high-risk NB, but their efficacy is likely impaired by the cancer cells' ability to adapt to these drugs through the employment of alternative signaling pathways. Based on the expression of 48 growth factor-related genes in 1189 NB tumors, we have developed a model for NB patient survival prediction. This model discriminates between stage 4 NB tumors with favorable outcomes (>80% overall survival) and very poor outcomes (<10%) independently from MYCN-amplification status. Using signaling pathway analysis and gene set enrichment methods in 60 NB patients with known therapy response, we identified signaling pathways, including EPO, NGF, and HGF, upregulated in patients with no or partial response. In a therapeutic setting, we showed that among six selected growth factors, EPO, and NGF showed the most pronounced protective effects in vitro against several promising anti-NB multikinase inhibitors: imatinib, dasatinib, crizotinib, cabozantinib, and axitinib. Mechanistically kinase inhibitors potentiated NB cells to stronger ERK activation by EPO and NGF. The protective action of these growth factors strongly correlated with ERK activation and was ERK-dependent. ERK inhibitors combined with anticancer drugs, especially with dasatinib, showed a synergistic effect on NB cell death. Consideration of growth factor signaling activity benefits NB outcome prediction and tailoring therapy regimens to treat NB.


Subject(s)
Drug Resistance, Neoplasm , Erythropoietin/genetics , Nerve Growth Factor/genetics , Neuroblastoma/pathology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mutation , Neoplasm Staging , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Signal Transduction/drug effects , Survival Analysis
17.
Article in English | MEDLINE | ID: mdl-34340765

ABSTRACT

Analysis of molecular pathway activation is the recent instrument that helps to quantize activities of various intracellular signaling, structural, DNA synthesis and repair, and biochemical processes. This may have a deep impact in fundamental research, bioindustry, and medicine. Unlike gene ontology analyses and numerous qualitative methods that can establish whether a pathway is affected in principle, the quantitative approach has the advantage of exactly measuring the extent of a pathway up/downregulation. This results in emergence of a new generation of molecular biomarkers-pathway activation levels, which reflect concentration changes of all measurable pathway components. The input data can be the high-throughput proteomic or transcriptomic profiles, and the output numbers take both positive and negative values and positively reflect overall pathway activation. Due to their nature, the pathway activation levels are more robust biomarkers compared to the individual gene products/protein levels. Here, we review the current knowledge of the quantitative gene expression interrogation methods and their applications for the molecular pathway quantization. We consider enclosed bioinformatic algorithms and their applications for solving real-world problems. Besides a plethora of applications in basic life sciences, the quantitative pathway analysis can improve molecular design and clinical investigations in pharmaceutical industry, can help finding new active biotechnological components and can significantly contribute to the progressive evolution of personalized medicine. In addition to the theoretical principles and concepts, we also propose publicly available software for the use of large-scale protein/RNA expression data to assess the human pathway activation levels.


Subject(s)
Algorithms , Gene Expression Profiling , Precision Medicine , Proteomics , Animals , Humans
18.
F S Sci ; 2(4): 355-364, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34377996

ABSTRACT

OBJECTIVE: To investigate transcriptional alterations in human semen samples associated with COVID-19 infection. DESIGN: Retrospective observational cohort study. SETTING: City hospital. PATIENTS: Ten patients who had recovered from mild COVID-19 infection. Eight of these patients had different sperm abnormalities that were diagnosed before infection. The control group consisted of 5 healthy donors without known abnormalities and no history of COVID-19 infection. INTERVENTIONS: We used RNA sequencing to determine gene expression profiles in all studied biosamples. Original standard bioinformatic instruments were used to analyze activation of intracellular molecular pathways. MAIN OUTCOME MEASURES: Routine semen analysis, gene expression levels, and molecular pathway activation levels in semen samples. RESULTS: We found statistically significant inhibition of genes associated with energy production pathways in the mitochondria, including genes involved in the electron transfer chain and genes involved in toll-like receptor signaling. All protein-coding genes encoded by the mitochondrial genome were significantly down-regulated in semen samples collected from patients after recovery from COVID-19. CONCLUSIONS: Our results may provide a molecular basis for the previously observed phenomenon of decreased sperm motility associated with COVID-19 infection. Moreover, the data will be beneficial for the optimization of preconception care for men who have recently recovered from COVID-19 infection.


Subject(s)
COVID-19 , COVID-19/genetics , Humans , Male , Retrospective Studies , Semen/physiology , Semen Analysis , Sperm Motility/genetics
19.
Cancers (Basel) ; 13(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298634

ABSTRACT

Glioblastoma is the most common and malignant brain malignancy worldwide, with a 10-year survival of only 0.7%. Aggressive multimodal treatment is not enough to increase life expectancy and provide good quality of life for glioblastoma patients. In addition, despite decades of research, there are no established biomarkers for early disease diagnosis and monitoring of patient response to treatment. High throughput sequencing technologies allow for the identification of unique molecules from large clinically annotated datasets. Thus, the aim of our study was to identify significant molecular changes between short- and long-term glioblastoma survivors by transcriptome RNA sequencing profiling, followed by differential pathway-activation-level analysis. We used data from the publicly available repositories The Cancer Genome Atlas (TCGA; number of annotated cases = 135) and Chinese Glioma Genome Atlas (CGGA; number of annotated cases = 218), and experimental clinically annotated glioblastoma tissue samples from the Institute of Pathology, Faculty of Medicine in Ljubljana corresponding to 2-58 months overall survival (n = 16). We found one differential gene for long noncoding RNA CRNDE whose overexpression showed correlation to poor patient OS. Moreover, we identified overlapping sets of congruently regulated differential genes involved in cell growth, division, and migration, structure and dynamics of extracellular matrix, DNA methylation, and regulation through noncoding RNAs. Gene ontology analysis can provide additional information about the function of protein- and nonprotein-coding genes of interest and the processes in which they are involved. In the future, this can shape the design of more targeted therapeutic approaches.

20.
Front Oncol ; 11: 652063, 2021.
Article in English | MEDLINE | ID: mdl-33937058

ABSTRACT

Multiple myeloma (MM) affects ~500,000 people and results in ~100,000 deaths annually, being currently considered treatable but incurable. There are several MM chemotherapy treatment regimens, among which eleven include bortezomib, a proteasome-targeted drug. MM patients respond differently to bortezomib, and new prognostic biomarkers are needed to personalize treatments. However, there is a shortage of clinically annotated MM molecular data that could be used to establish novel molecular diagnostics. We report new RNA sequencing profiles for 53 MM patients annotated with responses on two similar chemotherapy regimens: bortezomib, doxorubicin, dexamethasone (PAD), and bortezomib, cyclophosphamide, dexamethasone (VCD), or with responses to their combinations. Fourteen patients received both PAD and VCD; six received only PAD, and 33 received only VCD. We compared profiles for the good and poor responders and found five genes commonly regulated here and in the previous datasets for other bortezomib regimens (all upregulated in the good responders): FGFR3, MAF, IGHA2, IGHV1-69, and GRB14. Four of these genes are linked with known immunoglobulin locus rearrangements. We then used five machine learning (ML) methods to build a classifier distinguishing good and poor responders for two cohorts: PAD + VCD (53 patients), and separately VCD (47 patients). We showed that the application of FloWPS dynamic data trimming was beneficial for all ML methods tested in both cohorts, and also in the previous MM bortezomib datasets. However, the ML models build for the different datasets did not allow cross-transferring, which can be due to different treatment regimens, experimental profiling methods, and MM heterogeneity.

SELECTION OF CITATIONS
SEARCH DETAIL
...