Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6993, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914731

ABSTRACT

Adult skeletal muscle regeneration is mainly driven by muscle stem cells (MuSCs), which are highly heterogeneous. Although recent studies have started to characterize the heterogeneity of MuSCs, whether a subset of cells with distinct exists within MuSCs remains unanswered. Here, we find that a population of MuSCs, marked by Gli1 expression, is required for muscle regeneration. The Gli1+ MuSC population displays advantages in proliferation and differentiation both in vitro and in vivo. Depletion of this population leads to delayed muscle regeneration, while transplanted Gli1+ MuSCs support muscle regeneration more effectively than Gli1- MuSCs. Further analysis reveals that even in the uninjured muscle, Gli1+ MuSCs have elevated mTOR signaling activity, increased cell size and mitochondrial numbers compared to Gli1- MuSCs, indicating Gli1+ MuSCs are displaying the features of primed MuSCs. Moreover, Gli1+ MuSCs greatly contribute to the formation of GAlert cells after muscle injury. Collectively, our findings demonstrate that Gli1+ MuSCs represents a distinct MuSC population which is more active in the homeostatic muscle and enters the cell cycle shortly after injury. This population functions as the tissue-resident sentinel that rapidly responds to injury and initiates muscle regeneration.


Subject(s)
Muscular Diseases , Satellite Cells, Skeletal Muscle , Humans , Muscle, Skeletal/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Muscular Diseases/metabolism , Cell Differentiation
2.
Nat Commun ; 14(1): 4599, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524711

ABSTRACT

Mammalian embryos exhibit sophisticated cellular patterning that is intricately orchestrated at both molecular and cellular level. It has recently become apparent that cells within the animal body display significant heterogeneity, both in terms of their cellular properties and spatial distributions. However, current spatial transcriptomic profiling either lacks three-dimensional representation or is limited in its ability to capture the complexity of embryonic tissues and organs. Here, we present a spatial transcriptomic atlas of all major organs at embryonic day 13.5 in the mouse embryo, and provide a three-dimensional rendering of molecular regulation for embryonic patterning with stacked sections. By integrating the spatial atlas with corresponding single-cell transcriptomic data, we offer a detailed molecular annotation of the dynamic nature of organ development, spatial cellular interactions, embryonic axes, and divergence of cell fates that underlie mammalian development, which would pave the way for precise organ engineering and stem cell-based regenerative medicine.


Subject(s)
Organogenesis , Transcriptome , Animals , Mice , Organogenesis/genetics , Gene Expression Profiling , Embryo, Mammalian , Stem Cells , Mammals
3.
Nucleic Acids Res ; 51(2): 501-516, 2023 01 25.
Article in English | MEDLINE | ID: mdl-35929025

ABSTRACT

Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.


How many cell types are there in nature? How do they change during the life cycle? These are two fundamental questions that researchers have been trying to understand in the area of biology. In this study, single-cell mRNA sequencing data were used to profile over 2.6 million individual cells from mice, zebrafish and Drosophila at different life stages, 1.3 million of which were newly collected. The comprehensive datasets allow investigators to construct a cross-species cell landscape that helps to reveal the conservation and diversity of cell taxonomies at genetic and regulatory levels. The resources in this study are assembled into a publicly available website at http://bis.zju.edu.cn/cellatlas/.


Subject(s)
Single-Cell Analysis , Animals , Mice , Sequence Analysis, RNA , Zebrafish/growth & development , Drosophila/growth & development
4.
Cell ; 185(16): 2918-2935.e29, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35803260

ABSTRACT

Neoadjuvant immune checkpoint blockade has shown promising clinical activity. Here, we characterized early kinetics in tumor-infiltrating and circulating immune cells in oral cancer patients treated with neoadjuvant anti-PD-1 or anti-PD-1/CTLA-4 in a clinical trial (NCT02919683). Tumor-infiltrating CD8 T cells that clonally expanded during immunotherapy expressed elevated tissue-resident memory and cytotoxicity programs, which were already active prior to therapy, supporting the capacity for rapid response. Systematic target discovery revealed that treatment-expanded tumor T cell clones in responding patients recognized several self-antigens, including the cancer-specific antigen MAGEA1. Treatment also induced a systemic immune response characterized by expansion of activated T cells enriched for tumor-infiltrating T cell clonotypes, including both pre-existing and emergent clonotypes undetectable prior to therapy. The frequency of activated blood CD8 T cells, notably pre-treatment PD-1-positive KLRG1-negative T cells, was strongly associated with intra-tumoral pathological response. These results demonstrate how neoadjuvant checkpoint blockade induces local and systemic tumor immunity.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Neoadjuvant Therapy , Neoplasms/therapy , Tumor Microenvironment
6.
Nat Commun ; 12(1): 4442, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290256

ABSTRACT

The forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.


Subject(s)
Epigenesis, Genetic , Myocytes, Cardiac/physiology , Ubiquitin-Protein Ligases/metabolism , Animals , Animals, Newborn , CRISPR-Cas Systems , Gene Expression Regulation, Developmental , Histones/metabolism , Mice , Mutagenesis , Myocytes, Cardiac/metabolism , Phenotype , Reproducibility of Results , Ubiquitin-Protein Ligases/genetics , Ubiquitination
7.
Genome Med ; 13(1): 118, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34281603

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has been associated with neurological and neuropsychiatric illness in many individuals. We sought to further our understanding of the relationship between brain tropism, neuro-inflammation, and host immune response in acute COVID-19 cases. METHODS: Three brain regions (dorsolateral prefrontal cortex, medulla oblongata, and choroid plexus) from 5 patients with severe COVID-19 and 4 controls were examined. The presence of the virus was assessed by western blot against viral spike protein, as well as viral transcriptome analysis covering > 99% of SARS-CoV-2 genome and all potential serotypes. Droplet-based single-nucleus RNA sequencing (snRNA-seq) was performed in the same samples to examine the impact of COVID-19 on transcription in individual cells of the brain. RESULTS: Quantification of viral spike S1 protein and viral transcripts did not detect SARS-CoV-2 in the postmortem brain tissue. However, analysis of 68,557 single-nucleus transcriptomes from three distinct regions of the brain identified an increased proportion of stromal cells, monocytes, and macrophages in the choroid plexus of COVID-19 patients. Furthermore, differential gene expression, pseudo-temporal trajectory, and gene regulatory network analyses revealed transcriptional changes in the cortical microglia associated with a range of biological processes, including cellular activation, mobility, and phagocytosis. CONCLUSIONS: Despite the absence of detectable SARS-CoV-2 in the brain at the time of death, the findings suggest significant and persistent neuroinflammation in patients with acute COVID-19.


Subject(s)
Brain/metabolism , COVID-19/immunology , Gene Expression Profiling/methods , Immunity/genetics , Immunity/immunology , Transcriptome , Choroid Plexus/metabolism , Gene Expression , Gene Regulatory Networks , Humans , Inflammation , Microglia , Prefrontal Cortex/metabolism , SARS-CoV-2/genetics
8.
Cancer Discov ; 11(10): 2564-2581, 2021 10.
Article in English | MEDLINE | ID: mdl-33941591

ABSTRACT

CDK4/6 inhibitors are approved to treat breast cancer and are in trials for other malignancies. We examined CDK4/6 inhibition in mouse and human CD8+ T cells during early stages of activation. Mice receiving tumor-specific CD8+ T cells treated with CDK4/6 inhibitors displayed increased T-cell persistence and immunologic memory. CDK4/6 inhibition upregulated MXD4, a negative regulator of MYC, in both mouse and human CD8+ T cells. Silencing of Mxd4 or Myc in mouse CD8+ T cells demonstrated the importance of this axis for memory formation. We used single-cell transcriptional profiling and T-cell receptor clonotype tracking to evaluate recently activated human CD8+ T cells in patients with breast cancer before and during treatment with either palbociclib or abemaciclib. CDK4/6 inhibitor therapy in humans increases the frequency of CD8+ memory precursors and downregulates their expression of MYC target genes, suggesting that CDK4/6 inhibitors in patients with cancer may augment long-term protective immunity. SIGNIFICANCE: CDK4/6 inhibition skews newly activated CD8+ T cells toward a memory phenotype in mice and humans with breast cancer. CDK4/6 inhibitors may have broad utility outside breast cancer, particularly in the neoadjuvant setting to augment CD8+ T-cell priming to tumor antigens prior to dosing with checkpoint blockade.This article is highlighted in the In This Issue feature, p. 2355.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Adult , Aged , Aminopyridines/therapeutic use , Animals , Benzimidazoles/therapeutic use , Breast Neoplasms/pathology , Breast Neoplasms, Male/drug therapy , Breast Neoplasms, Male/pathology , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Piperazines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyridines/therapeutic use
9.
Genetics ; 217(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33681970

ABSTRACT

In the last larval instar, uncommitted progenitor cells in the Drosophila eye primordium start to adopt individual retinal cell fates, arrest their growth and proliferation, and initiate terminal differentiation into photoreceptor neurons and other retinal cell types. To explore the regulation of these processes, we have performed mRNA-Seq studies of the larval eye and antennal primordial at multiple developmental stages. A total of 10,893 fly genes were expressed during these stages and could be adaptively clustered into gene groups, some of whose expression increases or decreases in parallel with the cessation of proliferation and onset of differentiation. Using in situ hybridization of a sample of 98 genes to verify spatial and temporal expression patterns, we estimate that 534 genes or more are transcriptionally upregulated during retinal differentiation, and 1367 or more downregulated as progenitor cells differentiate. Each group of co-expressed genes is enriched for regulatory motifs recognized by co-expressed transcription factors, suggesting that they represent coherent transcriptional regulatory programs. Using available mutant strains, we describe novel roles for the transcription factors SoxNeuro (SoxN), H6-like homeobox (Hmx), CG10253, without children (woc), Structure specific recognition protein (Ssrp), and multisex combs (mxc).


Subject(s)
Compound Eye, Arthropod/metabolism , Gene Expression Regulation, Developmental , Transcriptome , Animals , Cell Differentiation , Compound Eye, Arthropod/growth & development , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Nature ; 590(7845): 344-350, 2021 02.
Article in English | MEDLINE | ID: mdl-33505024

ABSTRACT

Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies1-4. Because individual cells appear to be highly variable at all these levels5, it is essential to map different modalities in the same cells. Here we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem (ES) cells using DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence and the expression profile of 70 RNAs. Many loci were invariably associated with immunofluorescence marks in single mouse ES cells. These loci form 'fixed points' in the nuclear organizations of single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mouse ES cell subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3 trimethylation at lysine 27 (H3K27me3) and macroH2A1 (mH2A1), are heritable over at least 3-4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+-based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems.


Subject(s)
Cell Compartmentation/genetics , Cell Nucleus/genetics , Genomics/methods , Mouse Embryonic Stem Cells/cytology , Single-Cell Analysis/methods , Transcriptome/genetics , Animals , Cell Line , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Mammalian/genetics , Clone Cells/cytology , Fluorescent Antibody Technique , Genetic Markers , Histones/metabolism , Lysine/metabolism , Male , Mice , Time Factors
11.
Cancer Immunol Res ; 9(4): 470-485, 2021 04.
Article in English | MEDLINE | ID: mdl-33514509

ABSTRACT

Tumor-infiltrating myeloid-derived suppressor cells (MDSC) are associated with poor survival outcomes in many human cancers. MDSCs inhibit T cell-mediated tumor immunity in part because they strongly inhibit T-cell function. However, whether MDSCs inhibit early or later steps of T-cell activation is not well established. Here we show that MDSCs inhibited proliferation and induced apoptosis of CD8+ T cells even in the presence of dendritic cells (DC) presenting a high-affinity cognate peptide. This inhibitory effect was also observed with delayed addition of MDSCs to cocultures, consistent with functional data showing that T cells expressed multiple early activation markers even in the presence of MDSCs. Single-cell RNA-sequencing analysis of CD8+ T cells demonstrated a p53 transcriptional signature in CD8+ T cells cocultured with MDSCs and DCs. Confocal microscopy showed induction of DNA damage and nuclear accumulation of activated p53 protein in a substantial fraction of these T cells. DNA damage in T cells was dependent on the iNOS enzyme and subsequent nitric oxide release by MDSCs. Small molecule-mediated inhibition of iNOS or inactivation of the Nos2 gene in MDSCs markedly diminished DNA damage in CD8+ T cells. DNA damage in CD8+ T cells was also observed in KPC pancreatic tumors but was reduced in tumors implanted into Nos2-deficient mice compared with wild-type mice. These data demonstrate that MDSCs do not block early steps of T-cell activation but rather induce DNA damage and p53 pathway activation in CD8+ T cells through an iNOS-dependent pathway.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Myeloid-Derived Suppressor Cells/immunology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line, Tumor , DNA Damage , Humans , Immunosuppressive Agents , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/genetics , Signal Transduction/immunology
13.
Nature ; 586(7827): E7, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32934359

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Cell ; 182(3): 655-671.e22, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32603654

ABSTRACT

Checkpoint blockade with antibodies specific for the PD-1 and CTLA-4 inhibitory receptors can induce durable responses in a wide range of human cancers. However, the immunological mechanisms responsible for severe inflammatory side effects remain poorly understood. Here we report a comprehensive single-cell analysis of immune cell populations in colitis, a common and severe side effect of checkpoint blockade. We observed a striking accumulation of CD8 T cells with highly cytotoxic and proliferative states and no evidence of regulatory T cell depletion. T cell receptor (TCR) sequence analysis demonstrated that a substantial fraction of colitis-associated CD8 T cells originated from tissue-resident populations, explaining the frequently early onset of colitis symptoms following treatment initiation. Our analysis also identified cytokines, chemokines, and surface receptors that could serve as therapeutic targets for colitis and potentially other inflammatory side effects of checkpoint blockade.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CTLA-4 Antigen/immunology , Colitis/metabolism , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/adverse effects , Myeloid Cells/metabolism , Receptors, Chemokine/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , CTLA-4 Antigen/metabolism , Chemokines/metabolism , Colitis/drug therapy , Colitis/genetics , Colitis/immunology , Cytokines/metabolism , Flow Cytometry , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Melanoma/genetics , Melanoma/immunology , Melanoma/metabolism , Multigene Family , Myeloid Cells/cytology , RNA-Seq , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Receptors, CXCR6/genetics , Receptors, CXCR6/metabolism , Receptors, Chemokine/genetics , Single-Cell Analysis , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism
15.
Nature ; 577(7791): E6, 2020 01.
Article in English | MEDLINE | ID: mdl-31896818

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nucleic Acids Res ; 48(4): 1828-1842, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31853542

ABSTRACT

The developmental potential of cells, termed pluripotency, is highly dynamic and progresses through a continuum of naive, formative and primed states. Pluripotency progression of mouse embryonic stem cells (ESCs) from naive to formative and primed state is governed by transcription factors (TFs) and their target genes. Genomic techniques have uncovered a multitude of TF binding sites in ESCs, yet a major challenge lies in identifying target genes from functional binding sites and reconstructing dynamic transcriptional networks underlying pluripotency progression. Here, we integrated time-resolved 'trans-omic' datasets together with TF binding profiles and chromatin conformation data to identify target genes of a panel of TFs. Our analyses revealed that naive TF target genes are more likely to be TFs themselves than those of formative TFs, suggesting denser hierarchies among naive TFs. We also discovered that formative TF target genes are marked by permissive epigenomic signatures in the naive state, indicating that they are poised for expression prior to the initiation of pluripotency transition to the formative state. Finally, our reconstructed transcriptional networks pinpointed the precise timing from naive to formative pluripotency progression and enabled the spatiotemporal mapping of differentiating ESCs to their in vivo counterparts in developing embryos.


Subject(s)
Embryonic Development/genetics , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Transcription Factors/genetics , Animals , Binding Sites/genetics , Cell Differentiation/genetics , Chromatin/genetics , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Genome/genetics , Mice
18.
Nature ; 572(7770): 528-532, 2019 08.
Article in English | MEDLINE | ID: mdl-31391582

ABSTRACT

During post-implantation development of the mouse embryo, descendants of the inner cell mass in the early epiblast transit from the naive to primed pluripotent state1. Concurrently, germ layers are formed and cell lineages are specified, leading to the establishment of the blueprint for embryogenesis. Fate-mapping and lineage-analysis studies have revealed that cells in different regions of the germ layers acquire location-specific cell fates during gastrulation2-5. The regionalization of cell fates preceding the formation of the basic body plan-the mechanisms of which are instrumental for understanding embryonic programming and stem-cell-based translational study-is conserved in vertebrate embryos6-8. However, a genome-wide molecular annotation of lineage segregation and tissue architecture of the post-implantation embryo has yet to be undertaken. Here we report a spatially resolved transcriptome of cell populations at defined positions in the germ layers during development from pre- to late-gastrulation stages. This spatiotemporal transcriptome provides high-resolution digitized in situ gene-expression profiles, reveals the molecular genealogy of tissue lineages and defines the continuum of pluripotency states in time and space. The transcriptome further identifies the networks of molecular determinants that drive lineage specification and tissue patterning, supports a role of Hippo-Yap signalling in germ-layer development and reveals the contribution of visceral endoderm to the endoderm in the early mouse embryo.


Subject(s)
Cell Lineage , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Differentiation , Embryo, Mammalian/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Hippo Signaling Pathway , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Regulon/genetics , Signal Transduction , Transcriptome/genetics , YAP-Signaling Proteins
19.
Cell Rep ; 27(5): 1567-1578.e5, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31042481

ABSTRACT

In vertebrates, hematopoiesis occurring in different niches is orchestrated by intrinsic and extrinsic regulators. Previous studies have revealed numerous linear and planar regulatory mechanisms. However, a multi-dimensional transcriptomic atlas of any given hematopoietic organ has not yet been established. Here, we use multiple RNA sequencing (RNA-seq) approaches, including cell type-specific, temporal bulk RNA-seq, in vivo GEO-seq, and single-cell RNA-seq (scRNA-seq), to characterize the detailed spatiotemporal transcriptome during hematopoietic stem and progenitor cell (HSPC) expansion in the caudal hematopoietic tissue (CHT) of zebrafish. Combinatorial expression profiling reveals that, in the CHT niche, HSPCs and their neighboring supporting cells are co-regulated by shared signaling pathways and intrinsic factors, such as integrin signaling and Smchd1. Moreover, scRNA-seq analysis unveils the strong association between cell cycle status and HSPC differentiation. Taken together, we report a global transcriptome landscape that provides valuable insights and a rich resource to understand HSPC expansion in an intact vertebrate hematopoietic organ.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells/cytology , Transcriptome , Animals , Hematopoietic Stem Cells/classification , Hematopoietic Stem Cells/metabolism , RNA-Seq , Signal Transduction , Single-Cell Analysis , Stem Cell Niche , Zebrafish
20.
Science ; 363(6430): 993-998, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30819965

ABSTRACT

Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal surfaces, where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IECs). IgA is induced by both T cell-dependent and -independent (TI) pathways. However, little is known about TI regulation. We report that IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response, which is protective against enteric inflammation. IEC ER stress causes TI and microbiota-independent expansion and activation of peritoneal B1b cells, which culminates in increased lamina propria and luminal IgA. Increased numbers of IgA-producing plasma cells were observed in healthy humans with defective autophagy, who are known to exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that induce a barrier-protective TI IgA response.


Subject(s)
Endoplasmic Reticulum Stress , Epithelial Cells/immunology , Immunity, Mucosal , Immunoglobulin A/immunology , Intestinal Mucosa/immunology , Animals , Autophagy , Autophagy-Related Proteins/genetics , Humans , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , Plasma Cells/immunology , Tissue Culture Techniques , X-Box Binding Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...