Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Am J Hum Genet ; 111(4): 714-728, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579669

ABSTRACT

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Subject(s)
Argininosuccinate Lyase , Argininosuccinic Aciduria , Humans , Argininosuccinate Lyase/genetics , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/therapy , Clustered Regularly Interspaced Short Palindromic Repeats , RNA, Guide, CRISPR-Cas Systems , Urea , Gene Editing/methods
2.
Nature ; 628(8009): 844-853, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570685

ABSTRACT

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Subject(s)
Alleles , DNA Polymerase gamma , Encephalitis Viruses, Tick-Borne , Herpesvirus 1, Human , Immune Tolerance , SARS-CoV-2 , Animals , Female , Humans , Male , Mice , Age of Onset , COVID-19/immunology , COVID-19/virology , COVID-19/genetics , DNA Polymerase gamma/genetics , DNA Polymerase gamma/immunology , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/immunology , DNA, Mitochondrial/metabolism , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/genetics , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/virology , Founder Effect , Gene Knock-In Techniques , Herpes Simplex/genetics , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Immune Tolerance/genetics , Immune Tolerance/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon Type I/immunology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/immunology , Mutation , RNA, Mitochondrial/immunology , RNA, Mitochondrial/metabolism , SARS-CoV-2/immunology
4.
Commun Biol ; 7(1): 7, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168645

ABSTRACT

Familial cardiomyopathy in pediatric stages is a poorly understood presentation of heart disease in children that is attributed to pathogenic mutations. Through exome sequencing, we report a homozygous variant in tropomodulin 1 (TMOD1; c.565C>T, p.R189W) in three individuals from two unrelated families with childhood-onset dilated and restrictive cardiomyopathy. To decipher the mechanism of pathogenicity of the R189W mutation in TMOD1, we utilized a wide array of methods, including protein analyses, biochemistry and cultured cardiomyocytes. Structural modeling revealed potential defects in the local folding of TMOD1R189W and its affinity for actin. Cardiomyocytes expressing GFP-TMOD1R189W demonstrated longer thin filaments than GFP-TMOD1wt-expressing cells, resulting in compromised filament length regulation. Furthermore, TMOD1R189W showed weakened activity in capping actin filament pointed ends, providing direct evidence for the variant's effect on actin filament length regulation. Our data indicate that the p.R189W variant in TMOD1 has altered biochemical properties and reveals a unique mechanism for childhood-onset cardiomyopathy.


Subject(s)
Actin Cytoskeleton , Cardiomyopathies , Child , Humans , Actin Cytoskeleton/metabolism , Actins/metabolism , Myocytes, Cardiac/metabolism , Mutation , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Tropomodulin/genetics , Tropomodulin/chemistry , Tropomodulin/metabolism
5.
Pediatr Res ; 95(1): 102-111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37563452

ABSTRACT

BACKGROUND: The aim of the study was to characterize molecular diagnoses in patients with childhood-onset progressive neurological disorders of suspected genetic etiology. METHODS: We studied 48 probands (age range from newborn to 17 years old) with progressive neurological disorders of unknown etiology from the largest pediatric neurology clinic in Finland. Phenotypes included encephalopathy (54%), neuromuscular disorders (33%), movement disorders (11%), and one patient (2%) with hemiplegic migraine. All patients underwent whole-exome sequencing and disease-causing genes were analyzed. RESULTS: We found 20 (42%) of the patients to have variants in genes previously associated with disease. Of these, 12 were previously reported disease-causing variants, whereas eight patients had a novel variant on a disease-causing gene: ATP7A, CHD2, PURA, PYCR2, SLC1A4, SPAST, TRIT1, and UPF3B. Genetics also enabled us to define atypical clinical presentations of Rett syndrome (MECP2) and Menkes disease (ATP7A). Except for one deletion, all findings were single-nucleotide variants (missense 72%, truncating 22%, splice-site 6%). Nearly half of the variants were de novo. CONCLUSIONS: The most common cause of childhood encephalopathies are de novo variants. Whole-exome sequencing, even singleton, proved to be an efficient tool to gain specific diagnoses and in finding de novo variants in a clinically heterogeneous group of childhood encephalopathies. IMPACT: Whole-exome sequencing is useful in heterogeneous pediatric neurology cohorts. Our article provides further evidence for and novel variants in several genes. De novo variants are an important cause of childhood encephalopathies.


Subject(s)
Brain Diseases , Nervous System Diseases , Neurology , Rett Syndrome , Infant, Newborn , Humans , Child , Adolescent , Nervous System Diseases/genetics , Phenotype , Spastin/genetics , RNA-Binding Proteins/genetics
6.
Front Neurol ; 14: 1277944, 2023.
Article in English | MEDLINE | ID: mdl-38020590

ABSTRACT

Introduction: Spinal muscular atrophy, Jokela type (SMAJ) is a rare autosomal dominantly hereditary form of spinal muscular atrophy caused by a point mutation c.197G>T in CHCHD10. CHCHD10 is known to be involved in the regulation of mitochondrial function even though patients with SMAJ do not present with multiorgan symptoms of mitochondrial disease. We aimed to characterize the cardiopulmonary oxidative capacity of subjects with SMAJ compared to healthy controls and patients with mitochondrial myopathy. Methods: Eleven patients with genetically verified SMAJ, 26 subjects with mitochondrial myopathy (MM), and 28 healthy volunteers underwent a cardiopulmonary exercise test with lactate and ammonia sampling. The effect of the diagnosis group on the test results was analysed using a linear model. Results: Adjusted for sex, age, and BMI, the SMAJ group had lower power output (p < 0.001), maximal oxygen consumption (VO2 max) (p < 0.001), and mechanical efficiency (p < 0.001) compared to the healthy controls but like that in MM. In the SMAJ group and healthy controls, plasma lactate was lower than in MM measured at rest, light exercise, and 30 min after exercise (p ≤ 0.001-0.030) and otherwise lactate in SMAJ was lower than controls and MM, in longitudinal analysis p = 0.018. In MM, the ventilatory equivalent for oxygen was higher (p = 0.040), and the fraction of end-tidal CO2 lower in maximal exercise compared to healthy controls (p = 0.023) and subjects with SMAJ. Conclusion: In cardiopulmonary exercise test, subjects with SMAJ showed a similar decrease in power output and oxidative capacity as subjects with mitochondrial myopathy but did not exhibit findings typical of mitochondrial disease.

7.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37657934

ABSTRACT

Energetic insufficiency, excess production of reactive oxygen species (ROS), and aberrant signaling partially account for the diverse pathology of mitochondrial diseases. Whether interventions affecting ROS, a regulator of stem cell pools, could modify somatic stem cell homeostasis remains unknown. Previous data from mitochondrial DNA mutator mice showed that increased ROS leads to oxidative damage in erythroid progenitors, causing lifespan-limiting anemia. Also unclear is how ROS-targeted interventions affect terminally differentiated tissues. Here, we set out to test in mitochondrial DNA mutator mice how ubiquitous expression of the Ciona intestinalis alternative oxidase (AOX), which attenuates ROS production, affects murine stem cell pools. We found that AOX does not affect neural stem cells but delays the progression of mutator-driven anemia. Furthermore, when combined with the mutator, AOX potentiates mitochondrial stress and inflammatory responses in skeletal muscle. These differential cell type-specific findings demonstrate that AOX expression is not a global panacea for curing mitochondrial dysfunction. ROS attenuation must be carefully studied regarding specific underlying defects before AOX can be safely used in therapy.


Subject(s)
Mitochondria , Neural Stem Cells , Animals , Mice , Reactive Oxygen Species , Mitochondria/genetics , DNA, Mitochondrial/genetics
8.
Sci Adv ; 9(32): eadf7119, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37556547

ABSTRACT

Obesity and type 2 diabetes (T2D) are growing health challenges with unmet treatment needs. Traf2- and NCK-interacting protein kinase (TNIK) is a recently identified obesity- and T2D-associated gene with unknown functions. We show that TNIK governs lipid and glucose homeostasis in Drosophila and mice. Loss of the Drosophila ortholog of TNIK, misshapen, altered the metabolite profiles and impaired de novo lipogenesis in high sugar-fed larvae. Tnik knockout mice exhibited hyperlocomotor activity and were protected against diet-induced fat expansion, insulin resistance, and hepatic steatosis. The improved lipid profile of Tnik knockout mice was accompanied by enhanced skeletal muscle and adipose tissue insulin-stimulated glucose uptake and glucose and lipid handling. Using the T2D Knowledge Portal and the UK Biobank, we observed associations of TNIK variants with blood glucose, HbA1c, body mass index, body fat percentage, and feeding behavior. These results define an untapped paradigm of TNIK-controlled glucose and lipid metabolism.


Subject(s)
Insulin Resistance , Lipid Metabolism , Obesity , Protein Serine-Threonine Kinases , Animals , Mice , Diabetes Mellitus, Type 2/genetics , Glucose/metabolism , Lipids , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Protein Serine-Threonine Kinases/metabolism
9.
Handb Clin Neurol ; 194: 251-257, 2023.
Article in English | MEDLINE | ID: mdl-36813317

ABSTRACT

The mitochondrial disease group consists of different disorders with unprecedented variability of clinical manifestations and tissue-specific symptoms. Their tissue-specific stress responses vary depending on the patients' age and type of dysfunction. These responses include secretion of metabolically active signal molecules to systemic circulation. Such signals-metabolites or metabokines-can be also utilized as biomarkers. During the past 10 years, metabolite and metabokine biomarkers have been described for mitochondrial disease diagnosis and follow-up, to complement the conventional blood biomarkers lactate, pyruvate and alanine. These new tools include metabokines FGF21 and GDF15; cofactors (NAD-forms); sets of metabolites (multibiomarkers) and the full metabolome. FGF21 and GDF15 are messengers of mitochondrial integrated stress response that together outperform the conventional biomarkers in specificity and sensitivity for muscle-manifesting mitochondrial diseases. Metabolite or metabolomic imbalance (e.g., NAD+ deficiency) is a secondary consequence to the primary cause in some diseases, but relevant as a biomarker and a potential indicator of therapy targets. For therapy trials, the optimal biomarker set needs to be tailored to match the disease of interest. The new biomarkers have increased the value of blood samples in mitochondrial disease diagnosis and follow-up, enabling prioritization of patients to different diagnostic paths and having crucial roles in follow-up of therapy effect.


Subject(s)
Mitochondrial Diseases , Humans , Mitochondrial Diseases/diagnosis , Mitochondria/metabolism , Biomarkers , Pyruvic Acid/metabolism , Pyruvic Acid/therapeutic use
10.
J Cell Biol ; 222(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36383135

ABSTRACT

Astrocytes, often considered as secondary responders to neurodegeneration, are emerging as primary drivers of brain disease. Here we show that mitochondrial DNA depletion in astrocytes affects their primary cilium, the signaling organelle of a cell. The progressive oxidative phosphorylation deficiency in astrocytes induces FOXJ1 and RFX transcription factors, known as master regulators of motile ciliogenesis. Consequently, a robust gene expression program involving motile cilia components and multiciliated cell differentiation factors are induced. While the affected astrocytes still retain a single cilium, these organelles elongate and become remarkably distorted. The data suggest that chronic activation of the mitochondrial integrated stress response (ISRmt) in astrocytes drives anabolic metabolism and promotes ciliary elongation. Collectively, our evidence indicates that an active signaling axis involving mitochondria and primary cilia exists and that ciliary signaling is part of ISRmt in astrocytes. We propose that metabolic ciliopathy is a novel pathomechanism for mitochondria-related neurodegenerative diseases.


Subject(s)
Astrocytes , Cilia , Mitochondria , Astrocytes/metabolism , Cilia/metabolism , Cilia/pathology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Homeostasis , Mitochondria/metabolism , Mitochondria/pathology , Mice , Animals , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , DNA, Mitochondrial
11.
Dis Model Mech ; 15(10)2022 10 01.
Article in English | MEDLINE | ID: mdl-36285626

ABSTRACT

Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype-phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.


Subject(s)
Translational Research, Biomedical , Finland/epidemiology , Phenotype
12.
J Cell Biol ; 221(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36102863

ABSTRACT

Mitochondrial damage represents a dramatic change in cellular homeostasis. One rapid response is perimitochondrial actin polymerization, termed acute damage-induced actin (ADA). The consequences of ADA are not understood. In this study, we show evidence suggesting that ADA is linked to rapid glycolytic activation upon mitochondrial damage in multiple cells, including mouse embryonic fibroblasts and effector CD8+ T lymphocytes. ADA-inducing treatments include CCCP, antimycin, rotenone, oligomycin, and hypoxia. The Arp2/3 complex inhibitor CK666 or the mitochondrial sodium-calcium exchanger (NCLX) inhibitor CGP37157 inhibits both ADA and the glycolytic increase within 5 min, supporting ADA's role in glycolytic stimulation. Two situations causing chronic reductions in mitochondrial ATP production, mitochondrial DNA depletion and mutation to the NDUFS4 subunit of complex 1 of the electron transport chain, cause persistent perimitochondrial actin filaments similar to ADA. CK666 treatment causes rapid mitochondrial actin loss and a drop in ATP in NDUFS4 knock-out cells. We propose that ADA is necessary for rapid glycolytic activation upon mitochondrial impairment, to re-establish ATP production.


Subject(s)
Actins , Adenosine Triphosphate , Mitochondria , Actins/metabolism , Adenosine Triphosphate/biosynthesis , Animals , CD8-Positive T-Lymphocytes , Cells, Cultured , Electron Transport Complex I/metabolism , Fibroblasts , Glycolysis , Mice , Mitochondria/metabolism , Mitochondria/pathology , Polymerization
13.
Cells ; 11(16)2022 08 19.
Article in English | MEDLINE | ID: mdl-36010669

ABSTRACT

The m.3243A>G mutation in mitochondrial tRNA-Leu(UUR) is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown. Approximately one third of patients suffer from cardiac disease, which often increases mortality. Why only some patients develop cardiomyopathy is unknown. Here, we studied the molecular effects of a high m.3243A>G mutation load on cardiomyocyte functionality, using cells derived from induced pluripotent stem cells (iPSC-CM) of two different m.3243A>G patients, only one of them suffering from severe cardiomyopathy. While high mutation load impaired mitochondrial respiration in both patients' iPSC-CMs, the downstream consequences varied. mtDNA mutant cells from a patient with no clinical heart disease showed increased glucose metabolism and retained cellular ATP levels, whereas cells from the cardiac disease patient showed reduced ATP levels. In this patient, the mutations also affected intracellular calcium signaling, while this was not true in the other patient's cells. Our results reflect the clinical variability in mitochondrial disease patients and show that iPSC-CMs retain tissue specific features seen in patients.


Subject(s)
Cardiomyopathies , Myocytes, Cardiac , Adenosine Triphosphate , Cardiomyopathies/genetics , DNA, Mitochondrial/genetics , Electron Transport , Humans , Mutation/genetics
14.
Cell Metab ; 34(2): 197-208.e5, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35030325

ABSTRACT

Mitophagy is a quality control mechanism that eliminates damaged mitochondria, yet its significance in mammalian pathophysiology and aging has remained unclear. Here, we report that mitophagy contributes to mitochondrial dysfunction in skeletal muscle of aged mice and human patients. The early disease stage is characterized by muscle fibers with central nuclei, with enhanced mitophagy around these nuclei. However, progressive mitochondrial dysfunction halts mitophagy and disrupts lysosomal homeostasis. Interestingly, activated or halted mitophagy occur in a mosaic manner even in adjacent muscle fibers, indicating cell-autonomous regulation. Rapamycin restores mitochondrial turnover, indicating mTOR-dependence of mitochondrial recycling in advanced disease stage. Our evidence suggests that (1) mitophagy is a hallmark of age-related mitochondrial pathology in mammalian muscle, (2) mosaic halting of mitophagy is a mechanism explaining mosaic respiratory chain deficiency and accumulation of pathogenic mtDNA variants in adult-onset mitochondrial diseases and normal aging, and (3) augmenting mitophagy is a promising therapeutic approach for muscle mitochondrial dysfunction.


Subject(s)
Mitochondrial Diseases , Mitophagy , Animals , Humans , Mammals , Mice , Mitochondria , Mitochondrial Diseases/metabolism , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism
15.
Eur J Paediatr Neurol ; 36: 30-36, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34852981

ABSTRACT

OBJECTIVES: To clarify the diagnostic utility and the cost-effectiveness of whole-exome sequencing (WES) as a routine early-diagnostic tool in children with progressive neurological disorders. METHODS: Patients with infantile-onset severe neurological diseases or childhood-onset progressive neurological disorders were prospectively recruited to this WES study, in the pediatric neurology clinic at Helsinki University Hospital during 2016-2018. A total of 48 patients underwent a singleton WES. A control group of 49 children underwent traditional diagnostic examinations and were retrospectively collected from the hospital records. Their use of health care services, related to the diagnostic process, was gathered. Incremental cost-effectiveness ratio (ICER) per additional diagnosis was calculated from the health care provider perspective. Bootstrapping methods were used to estimate the uncertainty of cost-effectiveness outcomes. RESULTS: WES provided a better diagnostic yield (38%) than diagnostic pathway that did not prioritize WES in early diagnosis (25%). WES outperformed other diagnostic paths especially when made early, within one year of first admission (44%). Cost-effectiveness in our results are conservative, affected by WES costs during 2016-18. CONCLUSIONS: WES is an efficient and cost-effective diagnostic tool that should be prioritized in early diagnostic path of children with progressive neurological disorders. The progressively decreasing price of the test improves cost-effectiveness further.


Subject(s)
Genetic Testing , Nervous System Diseases , Child , Cost-Benefit Analysis , Humans , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Retrospective Studies , Exome Sequencing
16.
Eur J Hum Genet ; 29(12): 1833-1837, 2021 12.
Article in English | MEDLINE | ID: mdl-34305140

ABSTRACT

The aetiology of dystonia disorders is complex, and next-generation sequencing has become a useful tool in elucidating the variable genetic background of these diseases. Here we report a deleterious heterozygous truncating variant in the inosine monophosphate dehydrogenase gene (IMPDH2) by whole-exome sequencing, co-segregating with a dominantly inherited dystonia-tremor disease in a large Finnish family. We show that the defect results in degradation of the gene product, causing IMPDH2 deficiency in patient cells. IMPDH2 is the first and rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides, a dopamine synthetic pathway previously linked to childhood or adolescence-onset dystonia disorders. We report IMPDH2 as a new gene to the dystonia disease entity. The evidence underlines the important link between guanine metabolism, dopamine biosynthesis and dystonia.


Subject(s)
Dystonic Disorders/genetics , IMP Dehydrogenase/genetics , Tremor/genetics , Adolescent , Adult , Age of Onset , Child , Dystonic Disorders/diagnosis , Female , Genes, Dominant , Humans , Male , Middle Aged , Mutation , Pedigree , Phenotype , Tremor/diagnosis
17.
Stem Cell Reports ; 16(8): 1953-1967, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34329598

ABSTRACT

The generation of inducible pluripotent stem cells (iPSCs) is a revolutionary technique allowing production of pluripotent patient-specific cell lines used for disease modeling, drug screening, and cell therapy. Integrity of nuclear DNA (nDNA) is mandatory to allow iPSCs utilization, while quality control of mitochondrial DNA (mtDNA) is rarely included in the iPSCs validation process. In this study, we performed mtDNA deep sequencing during the transition from parental fibroblasts to reprogrammed iPSC and to differentiated neuronal precursor cells (NPCs) obtained from controls and patients affected by mitochondrial disorders. At each step, mtDNA variants, including those potentially pathogenic, fluctuate between emerging and disappearing, and some having functional implications. We strongly recommend including mtDNA analysis as an unavoidable assay to obtain fully certified usable iPSCs and NPCs.


Subject(s)
Cell Differentiation/genetics , Cellular Reprogramming/genetics , DNA, Mitochondrial/genetics , Induced Pluripotent Stem Cells/metabolism , Mutation , Neural Stem Cells/metabolism , Adult , Aged, 80 and over , Cell Line , Cells, Cultured , Child , Female , Fibroblasts/cytology , Fibroblasts/metabolism , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Neural Stem Cells/cytology , Young Adult
18.
Methods Mol Biol ; 2276: 143-151, 2021.
Article in English | MEDLINE | ID: mdl-34060038

ABSTRACT

Deoxynucleoside 5'-triphosphates (dNTPs) are the molecular building blocks for DNA synthesis, and their balanced concentration in the cell is fundamental for health. dNTP imbalance can lead to genomic instability and other metabolic disturbances, resulting in devastating mitochondrial diseases.The accurate and efficient measurement of dNTPs from different biological samples and cellular compartments is vital to understand the mechanisms behind these diseases and develop and scrutinize their possible treatments. This chapter describes an update on the most recent development of the traditional radiolabeled polymerase extension method and its adaptation for the measurement of whole-cell and mitochondrial dNTP pools from cultured cells and tissue samples. The solid-phase reaction setting enables an increase in efficiency, accuracy, and measurement scale.


Subject(s)
Biological Assay/methods , Cell Fractionation/methods , Cells/metabolism , Deoxyribonucleotides/metabolism , Mitochondria/metabolism , Animals , Cells, Cultured , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Mice , Mitochondria/genetics
19.
Lancet Neurol ; 20(7): 573-584, 2021 07.
Article in English | MEDLINE | ID: mdl-34146515

ABSTRACT

Mitochondrial diseases are some of the most common inherited neurometabolic disorders, and major progress has been made in our understanding, diagnosis, and treatment of these conditions in the past 5 years. Development of national mitochondrial disease cohorts and international collaborations has changed our knowledge of the spectrum of clinical phenotypes and natural history of mitochondrial diseases. Advances in high-throughput sequencing technologies have altered the diagnostic algorithm for mitochondrial diseases by increasingly using a genetics-first approach, with more than 350 disease-causing genes identified to date. While the current management strategy for mitochondrial disease focuses on surveillance for multisystem involvement and effective symptomatic treatment, new endeavours are underway to find better treatments, including repurposing current drugs, use of novel small molecules, and gene therapies. Developments made in reproductive technology offer women the opportunity to prevent transmission of DNA-related mitochondrial disease to their children.


Subject(s)
Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Mitochondrial Diseases/therapy , DNA, Mitochondrial/genetics , Genetic Therapy/methods , Genetic Therapy/trends , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation/genetics
20.
Hum Genet ; 140(11): 1593-1609, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33835239

ABSTRACT

We investigated the clinical, genetic, and pathological characteristics of a previously unknown severe juvenile brain disorder in several litters of Parson Russel Terriers. The disease started with epileptic seizures at 6-12 weeks of age and progressed rapidly to status epilepticus and death or euthanasia. Histopathological changes at autopsy were restricted to the brain. There was severe acute neuronal degeneration and necrosis diffusely affecting the grey matter throughout the brain with extensive intraneuronal mitochondrial crowding and accumulation of amyloid-ß (Aß). Combined homozygosity mapping and genome sequencing revealed an in-frame 6-bp deletion in the nuclear-encoded pitrilysin metallopeptidase 1 (PITRM1) encoding for a mitochondrial protease involved in mitochondrial targeting sequence processing and degradation. The 6-bp deletion results in the loss of two amino acid residues in the N-terminal part of PITRM1, potentially affecting protein folding and function. Assessment of the mitochondrial function in the affected brain tissue showed a significant deficiency in respiratory chain function. The functional consequences of the mutation were modeled in yeast and showed impaired growth in permissive conditions and an impaired respiration capacity. Loss-of-function variants in human PITRM1 result in a childhood-onset progressive amyloidotic neurological syndrome characterized by spinocerebellar ataxia with behavioral, psychiatric and cognitive abnormalities. Homozygous Pitrm1-knockout mice are embryonic lethal, while heterozygotes show a progressive, neurodegenerative phenotype characterized by impairment in motor coordination and Aß deposits. Our study describes a novel early-onset PITRM1-related neurodegenerative canine brain disorder with mitochondrial dysfunction, Aß accumulation, and lethal epilepsy. The findings highlight the essential role of PITRM1 in neuronal survival and strengthen the connection between mitochondrial dysfunction and neurodegeneration.


Subject(s)
Dog Diseases/genetics , Epilepsy/veterinary , Metalloendopeptidases/genetics , Mitochondria/metabolism , Neurodegenerative Diseases/veterinary , Amyloid beta-Peptides/metabolism , Animals , Brain/enzymology , Brain/metabolism , Brain/pathology , Dog Diseases/pathology , Dogs , Epilepsy/genetics , Female , Male , Metalloendopeptidases/chemistry , Metalloendopeptidases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Oxygen Consumption , Pedigree , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...