Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cancer Immunol Res ; 12(4): 413-426, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38349973

ABSTRACT

Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.


Subject(s)
Colitis, Ulcerative , Colitis-Associated Neoplasms , Neutrophils , Animals , Humans , Mice , Carcinogenesis , Colitis/pathology , Colitis, Ulcerative/metabolism , Colitis-Associated Neoplasms/pathology , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism
2.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38383454

ABSTRACT

Breast implants are extensively employed for both reconstructive and esthetic purposes. However, the safety of breast implants with textured surfaces has been questioned, owing to a potential correlation with anaplastic large-cell lymphoma and the recurrence of breast cancer. This study investigates the immune response elicited by different prosthetic surfaces, focusing on the comparison between macrotextured and microtextured breast implants. Through the analysis of intraoperatively harvested periprosthetic fluids and cell culture experiments on surface replicas, we demonstrate that macrotextured surfaces elicit a more pronounced chronic-like activation of leucocytes and an increased release of inflammatory cytokines, in contrast to microtextured surfaces. In addition, in vitro fluorescent imaging of leucocytes revealed an accumulation of lymphocytes within the cavities of the macrotextured surfaces, indicating that the physical entrapment of these cells may contribute to their activation. These findings suggest that the topography of implant surfaces plays a significant role in promoting a chronic-like inflammatory environment, which could be a contributing factor in the development of lymphomas associated with a wide range of implantable devices.


Subject(s)
Breast Implantation , Breast Implants , Breast Neoplasms , Lymphoma, Large-Cell, Anaplastic , Humans , Female , Breast Implants/adverse effects , Lymphoma, Large-Cell, Anaplastic/etiology , Lymphoma, Large-Cell, Anaplastic/surgery
3.
Immunity ; 56(7): 1429-1431, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37437532

ABSTRACT

Interleukin-1 (IL-1) is a primary pro-inflammatory cytokine requiring tightly controlled negative regulation. In this issue of Immunity, Wang et al.,1 inspired by an IL-1 receptor missense mutation associated with unleashed IL-1-mediated inflammation, design a new drug to selectively inhibit IL-1.


Subject(s)
Cytokines , Interleukin-1 , Humans , Interleukin-1/genetics , Inflammation/genetics
4.
Semin Immunol ; 66: 101712, 2023 03.
Article in English | MEDLINE | ID: mdl-36753974

ABSTRACT

Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.


Subject(s)
Immunity, Innate , Neoplasms , Animals , Humans , Inflammation , Killer Cells, Natural , Neoplasms/metabolism , Receptors, Interleukin-1/metabolism
5.
Front Immunol ; 13: 804641, 2022.
Article in English | MEDLINE | ID: mdl-35211118

ABSTRACT

Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs to a complex family including ligands with agonist activity, receptor antagonists, and an anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R) family, include signaling receptor complexes, decoy receptors, and negative regulators. Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a tight control of inflammatory responses, which ensures a balance between amplification of innate immunity and uncontrolled inflammation. IL-1 family members interact with innate immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid cells, contributing to their differentiation and functional polarization and plasticity. Here we will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their complex impact in pathology, ranging from infections and inflammatory responses, to cancer and neurologic disorders, as well as clinical implications and potential therapeutic exploitation will be presented.


Subject(s)
Immunity, Innate , Inflammation/immunology , Receptors, Interleukin-1 Type II/metabolism , Receptors, Interleukin-1/metabolism , Animals , Humans , Immunomodulation , Neoplasms/immunology , Nervous System Diseases/immunology
6.
J Leukoc Biol ; 111(4): 817-836, 2022 04.
Article in English | MEDLINE | ID: mdl-34346525

ABSTRACT

The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIß), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.


Subject(s)
COVID-19 , Membrane Proteins , Antigens, CD20 , Family , Humans , Membrane Proteins/genetics , Monocytes/metabolism
7.
J Immunother Cancer ; 9(11)2021 11.
Article in English | MEDLINE | ID: mdl-34824159

ABSTRACT

BACKGROUND: Natural killer (NK) cells require a functional lytic granule machinery to mediate effective antitumor responses. Evading the lytic cargo deployed at the immune synapse (IS) could be a critical step for cancer progression through yet unidentified mechanisms. METHODS: NK cell antibody-dependent cellular cytotoxicity (ADCC) is a major determinant of the clinical efficacy of some therapeutic antibodies including the anti-HER2 Trastuzumab. Thus, we screened sera of Trastuzumab-resistant HER2 +patients with breast cancer for molecules that could inhibit NK cell ADCC. We validated our findings in vitro using cytotoxicity assays and confocal imaging of the lytic granule machinery and in vivo using syngeneic and xenograft murine models. RESULTS: We found that sera from Trastuzumab-refractory patients could inhibit healthy NK cell ADCC in vitro. These sera contained high levels of the inflammatory protein chitinase 3-like 1 (CHI3L1) compared with sera from responders and healthy controls. We demonstrate that recombinant CHI3L1 inhibits both ADCC and innate NK cell cytotoxicity. Mechanistically, CHI3L1 prevents the correct polarization of the microtubule-organizing center along with the lytic granules to the IS by hindering the receptor of advanced glycation end-products and its downstream JNK signaling. In vivo, CHI3L1 administration drastically impairs the control of NK cell-sensitive tumors, while CHI3L1 blockade synergizes with ADCC to cure mice with HER2 +xenografts. CONCLUSION: Our work highlights a new paradigm of tumor immune escape mediated by CHI3L1 which acts on the cytotoxic machinery and prevents granule polarization. Targeting CHI3L1 could mitigate immune escape and potentiate antibody and cell-based immunotherapies.


Subject(s)
Chitinase-3-Like Protein 1/metabolism , Immune Evasion/immunology , Immunotherapy/methods , Killer Cells, Natural/immunology , Neoplasms/genetics , Animals , Female , Humans , Mice
8.
Cell Rep ; 37(3): 109871, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686325

ABSTRACT

Human Vδ2 cells are innate-like γδ T effectors performing potent immune surveillance against tumors. The constitutive expression of NKG2A identifies a subset of Vδ2 T cells licensed with an intrinsic hyper-responsiveness against cancer. Indeed, the transcriptomic profiles of NKG2A+ and NKG2A- cells characterize two distinct "intralineages" of Vδ2 T lymphocytes that appear early during development, keep their phenotypes, and show self-renewal capabilities in adult life. The hyper-responsiveness of NKG2A+ Vδ2 T cells is counterbalanced by the inhibitory signaling delivered by human leukocyte antigen E (HLA-E) expressed on malignant cells as a tumor-escape mechanism. However, either masking or knocking out NKG2A restores the capacity of Vδ2 T cells to exert the highest effector functions even against HLA-E+ tumors. This is highly relevant in the clinic, as the different degrees of engagement of the NKG2A-HLA-E checkpoint in hepatocellular carcinoma, glioblastoma, and non-small cell lung cancer directly impact patients' overall survival. These findings open avenues for developing combined cellular and immunologic anticancer therapies.


Subject(s)
Cytotoxicity, Immunologic , Intraepithelial Lymphocytes/metabolism , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/metabolism , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Neoplasms/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Aged , Case-Control Studies , Cell Proliferation , Cell Self Renewal , Coculture Techniques , Cytokines/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Immunity, Innate , Infant , Intraepithelial Lymphocytes/immunology , K562 Cells , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/genetics , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Phenotype , Receptors, Antigen, T-Cell, gamma-delta/genetics , Signal Transduction
9.
Nat Cancer ; 2(2): 218-232, 2021 02.
Article in English | MEDLINE | ID: mdl-34505065

ABSTRACT

Complement has emerged as a component of tumor promoting inflammation. We conducted a systematic assessment of the role of complement activation and effector pathways in sarcomas. C3-/-, MBL1/2-/- and C4-/- mice showed reduced susceptibility to 3-methylcholanthrene sarcomagenesis and transplanted sarcomas, whereas C1q and factor B deficiency had marginal effects. Complement 3a receptor (C3aR), but not C5aR1 and C5aR2, deficiency mirrored the phenotype of C3-/- mice. C3 and C3aR deficiency were associated with reduced accumulation and functional skewing of tumor-associated macrophages, increased T cell activation and response to anti-PD-1 therapy. Transcriptional profiling of sarcoma infiltrating macrophages and monocytes revealed the enrichment of MHC II-dependent antigen presentation pathway in C3-deficient cells. In patients, C3aR expression correlated with a macrophage population signature and C3 deficiency-associated signatures predicted better clinical outcome. These results suggest that the lectin pathway and C3a/C3aR axis are key components of complement and macrophage-mediated sarcoma promotion and immunosuppression.


Subject(s)
Lectins , Receptors, Complement/metabolism , Sarcoma , Animals , Complement Activation/physiology , Humans , Immunosuppression Therapy , Lectins/metabolism , Mice , Monocytes/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Sarcoma/drug therapy
10.
Front Immunol ; 12: 666198, 2021.
Article in English | MEDLINE | ID: mdl-34093560

ABSTRACT

Klebsiella pneumoniae is a common pathogen in human sepsis. The emergence of multidrug-resistant K. pneumoniae strains represents a major clinical challenge in nosocomial and community acquired infections. The long pentraxin PTX3, a key component of humoral innate immunity, is involved in resistance to selected pathogens by promoting opsonophagocytosis. We investigated the relevance of PTX3 in innate immunity against K. pneumoniae infections using Ptx3-/- mice and mouse models of severe K. pneumoniae infections. Local and systemic PTX3 expression was induced following K. pneumoniae pulmonary infection, in association with the up-regulation of TNF-α and IL-1ß. PTX3 deficiency in mice was associated with higher bacterial burden and mortality, release of pro-inflammatory cytokines as well as IL-10 in the lung and systemically. The analysis of the mechanisms responsible of PTX3-dependent control of K. pneumoniae infection revealed that PTX3 did not interact with K. pneumoniae, or promote opsonophagocytosis. The comparison of susceptibility of wild-type, Ptx3-/-, C3-/- and Ptx3-/- /C3-/- mice to the infection showed that PTX3 acted in a complement-independent manner. Lung histopathological analysis showed more severe lesions in Ptx3-/- mice with fibrinosuppurative, necrotizing and haemorrhagic bronchopneumonia, associated with increased fibrin deposition in the lung and circulating fibrinogen consumption. These findings indicate that PTX3 contributes to the control of K. pneumoniae infection by modulating inflammatory responses and tissue damage. Thus, this study emphasizes the relevance of the role of PTX3 as regulator of inflammation and orchestrator of tissue repair in innate responses to infections.


Subject(s)
C-Reactive Protein/immunology , Klebsiella Infections/immunology , Klebsiella pneumoniae/pathogenicity , Serum Amyloid P-Component/immunology , Animals , Bacterial Load/immunology , C-Reactive Protein/deficiency , C-Reactive Protein/metabolism , Cytokines/metabolism , Fibrin/metabolism , Fibrinogen/metabolism , Immunity, Innate , Inflammation , Klebsiella Infections/metabolism , Klebsiella Infections/microbiology , Klebsiella Infections/pathology , Klebsiella pneumoniae/immunology , Lung/immunology , Lung/metabolism , Lung/microbiology , Lung/pathology , Mice , Sepsis/immunology , Sepsis/metabolism , Sepsis/microbiology , Sepsis/pathology , Serum Amyloid P-Component/deficiency , Serum Amyloid P-Component/metabolism , Stromal Cells/metabolism
11.
EMBO J ; 40(8): e107238, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33749896

ABSTRACT

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.


Subject(s)
Cell Proliferation , Glycosphingolipids/biosynthesis , Golgi Apparatus/metabolism , Membrane Proteins/metabolism , Cells, Cultured , HeLa Cells , Humans , Lysosomes/metabolism , Membrane Proteins/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Signal Transduction
12.
Nat Immunol ; 22(1): 19-24, 2021 01.
Article in English | MEDLINE | ID: mdl-33208929

ABSTRACT

Long pentraxin 3 (PTX3) is an essential component of humoral innate immunity, involved in resistance to selected pathogens and in the regulation of inflammation1-3. The present study was designed to assess the presence and significance of PTX3 in Coronavirus Disease 2019 (COVID-19)4-7. RNA-sequencing analysis of peripheral blood mononuclear cells, single-cell bioinformatics analysis and immunohistochemistry of lung autopsy samples revealed that myelomonocytic cells and endothelial cells express high levels of PTX3 in patients with COVID-19. Increased plasma concentrations of PTX3 were detected in 96 patients with COVID-19. PTX3 emerged as a strong independent predictor of 28-d mortality in multivariable analysis, better than conventional markers of inflammation, in hospitalized patients with COVID-19. The prognostic significance of PTX3 abundance for mortality was confirmed in a second independent cohort (54 patients). Thus, circulating and lung myelomonocytic cells and endothelial cells are a major source of PTX3, and PTX3 plasma concentration can serve as an independent strong prognostic indicator of short-term mortality in COVID-19.


Subject(s)
C-Reactive Protein/genetics , COVID-19/genetics , Gene Expression Profiling/methods , Macrophages/metabolism , SARS-CoV-2/isolation & purification , Serum Amyloid P-Component/genetics , A549 Cells , Adult , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/virology , Cell Line, Tumor , Cells, Cultured , Cohort Studies , Endothelial Cells/metabolism , Epidemics , Female , Humans , Male , Middle Aged , Monocytes/metabolism , Neutrophils/metabolism , Prognosis , SARS-CoV-2/physiology , Serum Amyloid P-Component/metabolism
13.
Cell ; 178(2): 346-360.e24, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31257026

ABSTRACT

Neutrophils are a component of the tumor microenvironment and have been predominantly associated with cancer progression. Using a genetic approach complemented by adoptive transfer, we found that neutrophils are essential for resistance against primary 3-methylcholantrene-induced carcinogenesis. Neutrophils were essential for the activation of an interferon-γ-dependent pathway of immune resistance, associated with polarization of a subset of CD4- CD8- unconventional αß T cells (UTCαß). Bulk and single-cell RNA sequencing (scRNA-seq) analyses unveiled the innate-like features and diversity of UTCαß associated with neutrophil-dependent anti-sarcoma immunity. In selected human tumors, including undifferentiated pleomorphic sarcoma, CSF3R expression, a neutrophil signature and neutrophil infiltration were associated with a type 1 immune response and better clinical outcome. Thus, neutrophils driving UTCαß polarization and type 1 immunity are essential for resistance against murine sarcomas and selected human tumors.


Subject(s)
Disease Resistance , Neoplasms/pathology , Neutrophils/immunology , Sarcoma/pathology , T-Lymphocytes/metabolism , Animals , Chromones/toxicity , Disease Resistance/immunology , Humans , Immunity, Innate , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-12/genetics , Interleukin-12/metabolism , Kaplan-Meier Estimate , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/immunology , Neoplasms/mortality , Neutrophil Infiltration , Neutrophils/cytology , Neutrophils/metabolism , Receptors, Colony-Stimulating Factor/metabolism , Sarcoma/chemically induced , Sarcoma/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tumor Microenvironment
14.
Cancer Immunol Res ; 7(6): 874-885, 2019 06.
Article in English | MEDLINE | ID: mdl-31018956

ABSTRACT

Chronic inflammation, including that driven by autoimmunity, is associated with the development of B-cell lymphomas. IL1R8 is a regulatory receptor belonging to the IL1R family, which negatively regulates NF-κB activation following stimulation of IL1R or Toll-like receptor family members. IL1R8 deficiency is associated with the development of severe autoimmune lupus-like disease in lpr mice. We herein investigated whether concomitant exacerbated inflammation and autoimmunity caused by the deficiency of IL1R8 could recapitulate autoimmunity-associated lymphomagenesis. We thus monitored B-cell lymphoma development during the aging of IL1R8-deficient lpr mice, observing an increased lymphoid cell expansion that evolved to diffuse large B-cell lymphoma (DLBCL). Molecular and gene-expression analyses showed that the NF-κB pathway was constitutively activated in Il1r8 -/-/lpr B splenocytes. In human DLBCL, IL1R8 had reduced expression compared with normal B cells, and higher IL1R8 expression was associated with a better outcome. Thus, IL1R8 silencing is associated with increased lymphoproliferation and transformation in the pathogenesis of B-cell lymphomas associated with autoimmunity.


Subject(s)
Autoimmunity/genetics , Disease Susceptibility , Lymphoma/etiology , Receptors, Interleukin-1/deficiency , Animals , Biomarkers , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Gene Expression , Genetic Predisposition to Disease , Humans , Immunoglobulin Heavy Chains/genetics , Immunohistochemistry , Lymphoma/metabolism , Lymphoma/pathology , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , NF-kappa B/metabolism , Signal Transduction , Toll-Like Receptors/metabolism
15.
Hum Mol Genet ; 28(9): 1414-1428, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30566690

ABSTRACT

Long non-coding RNAs (lncRNAs) are post-transcriptional and epigenetic regulators, whose implication in neurodegenerative and autoimmune diseases remains poorly understood. We analyzed publicly available microarray data sets to identify dysregulated lncRNAs in multiple sclerosis (MS), a neuroinflammatory autoimmune disease. We found a consistent upregulation in MS of the lncRNA MALAT1 (2.7-fold increase; meta-analysis, P = 1.3 × 10-8; 190 cases, 182 controls), known to regulate alternative splicing (AS). We confirmed MALAT1 upregulation in two independent MS cohorts (1.5-fold increase; P < 0.01; 59 cases, 50 controls). We hence performed MALAT1 overexpression/knockdown in cell lines, demonstrating that its modulation impacts on endogenous expression of splicing factors (HNRNPF and HNRNPH1) and on AS of MS-associated genes (IL7R and SP140). Minigene-based splicing assays upon MALAT1 modulation recapitulated IL7R and SP140 isoform unbalances observed in patients. RNA-sequencing of MALAT1-knockdown Jurkat cells further highlighted MALAT1 role in splicing (approximately 1100 significantly-modulated AS events) and revealed its contribution to backsplicing (approximately 50 differentially expressed circular RNAs). Our study proposes a possible novel role for MALAT1 dysregulation and the consequent AS alteration in MS pathogenesis, based on anomalous splicing/backsplicing profiles of MS-relevant genes.


Subject(s)
Alternative Splicing , Multiple Sclerosis/genetics , Neoplasms/genetics , RNA, Circular , RNA, Long Noncoding/genetics , Transcriptome , Gene Expression Regulation , Humans , RNA Interference
16.
Scand J Immunol ; 88(3): e12705, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30048003

ABSTRACT

NK cells are innate lymphoid cells, which play a key role in the immune response to cancer and pathogens and participate in the shaping of adaptive immunity. NK cells engage in a complex bidirectional interaction with myelomonocytic cells. In particular, macrophages, dendritic cells and neutrophils promote differentiation and effector function of NK cells and, on the other hand, myelomonocytic cells express triggers of checkpoint blockade (eg PD-L1) and other immunosuppressive molecules, which negatively regulate NK cell function. In addition, NK cells express high levels of IL-1R8, which acts as a checkpoint for IL-18 driven differentiation and activation of NK cells. Evidence suggests that targeting the myeloid cell-NK cell crosstalk unleashes effective anti-tumour and anti-viral resistance.


Subject(s)
Killer Cells, Natural/physiology , Myeloid Cells/physiology , Neoplasms/immunology , Virus Diseases/immunology , Animals , B7-H1 Antigen/metabolism , Cell Communication , Humans , Immunity, Innate , Interleukin-18/metabolism , Receptors, Interleukin-1/metabolism , Yin-Yang
17.
Immunol Rev ; 281(1): 233-247, 2018 01.
Article in English | MEDLINE | ID: mdl-29247989

ABSTRACT

Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) are key players in immunity and inflammation and are tightly regulated at different levels. Most cell types, including cells of the innate and adaptive immune system express ILRs and TLRs. In addition, IL-1 family members are emerging as key players in the differentiation and function of innate and adaptive lymphoid cells. IL-1R2 and IL-1R8 (also known as TIR8 or SIGIRR) are members of the ILR family acting as negative regulators of the IL-1 system. IL-1R2 binds IL-1 and the accessory protein IL-1RAcP without activating signaling and can be released as a soluble form (sIL-1R2), thus modulating IL-1 availability for the signaling receptor. IL-1R8 dampens ILR- and TLR-mediated cell activation and it is a component of the receptor recognizing human IL-37. Here, we summarize our current understanding of the structure and function of IL-1R2 and IL-1R8, focusing on their role in different pathological conditions, ranging from infectious and sterile inflammation, to autoimmunity and cancer-related inflammation. We also address the emerging evidence regarding the role of IL-1R8 as a crucial checkpoint molecule in NK cells in anti-cancer and antiviral activity and the potential therapeutic implications of IL-1R8 blockade in specific pathological contexts.


Subject(s)
Infections/immunology , Inflammation/immunology , Killer Cells, Natural/immunology , Receptors, Interleukin-1 Type II/metabolism , Receptors, Interleukin-1/metabolism , Animals , Humans , Immunity , Immunologic Surveillance , Immunomodulation
SELECTION OF CITATIONS
SEARCH DETAIL
...