Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Evol Biol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105302

ABSTRACT

Locomotor activity is one of the major traits that is affected by age. Greater locomotor activity is also known to evolve in the course of dispersal evolution. However, the impact of dispersal evolution on the functional senescence of locomotor activity is largely unknown. We addressed this knowledge gap using large outbred populations of Drosophila melanogaster selected for increased dispersal. We tracked locomotor activity of these flies at regular intervals until a late age. Longevity of these flies was also recorded. We found that locomotor activity declines with age in general. However interestingly, activity level of dispersal selected populations never drops below the ancestry-matched-controls, despite the rate of age-dependent decline in activity of the dispersal selected populations being greater than their respective controls. Dispersal selected population was also found to have shorter lifespan as compared to its control, a potential cost of elevated level of activity throughout their life. These results are crucial in the context of invasion biology as contemporary climate change, habitat degradation, and destruction provide congenial conditions for dispersal evolution. Such controlled and tractable studies investigating the ageing pattern of important functional traits are important in the field of biogerontology as well.

2.
Exp Gerontol ; 194: 112501, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897017

ABSTRACT

Diet significantly affects reproductive outcomes across species, yet the precise effects of macronutrient compositions beyond caloric intake on reproductive aging are understudied. Existing literature presents conflicting views on the fertility impacts of nutrient-rich versus nutrient-poor developmental diets, underscoring a notable research gap. This study addresses these gaps by examining effects of isocaloric diets with varied protein-to-carbohydrate ratios during both developmental and adult stages on reproductive aging of a large, outbred Drosophila melanogaster population (n = âˆ¼2100). Our results clearly demonstrate an age-dependent dietary impact on reproductive output, initially dominated by the developmental diet, then by a combination of developmental and adult diets in early to mid-life, and ultimately by the adult diet in later life. Importantly, we found that the effects of developmental and adult diets on reproductive output are independent, with no significant interaction. Further investigations into the mechanisms revealed that the effect of developmental diet on fecundity is regulated via ovarioles formation and vitellogenesis; while, the effect of adult diet on fecundity is mostly regulated only via vitellogenesis. These insights resolve disputes in the literature about dietary impacts on fertility and offer valuable perspectives for optimizing fertility strategies in improving public health and conservation efforts in this changing world.


Subject(s)
Aging , Diet , Drosophila melanogaster , Reproduction , Dietary Proteins , Animals , Fertility , Vitellogenesis
3.
Ecol Evol ; 14(2): e10976, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343564

ABSTRACT

Food is fundamental for the survival of organisms, governing growth, maintenance, and reproduction through the provision of essential macronutrients. However, access to food with optimum macronutrient composition, which will maximize the evolutionary fitness of an organism, is not always guaranteed. This leads to dietary mismatches with potential impacts on organismal performance. To understand the consequences of such dietary mismatches, we examined the effects of isocaloric diets varying in macronutrient composition on eight key organismal traits spanning across the lifespan of a large outbred Drosophila melanogaster population (n ~ 2500). Our findings reveal that carbohydrate-reduced isocaloric diets correlates to accelerated pre-adult development and boosts reproductive output without impacting pre-adult viability and body size. Conversely, an elevated dietary carbohydrate content correlated to reduced lifespan in flies, evidenced by accelerated functional senescence including compromised locomotor activity and deteriorating gut integrity. Furthermore, transcriptomic analysis indicated a substantial difference in gene regulatory landscapes between flies subject to high-carbohydrate versus high-protein diet, with elevated protein levels indicating transcriptomes primed for reduced synthesis of fatty acids. Taken together, our study helps advance our understanding of the effect of macronutrient composition on life history traits and their interrelations, offering critical insights into potential adaptive strategies that organisms might adopt against the continual dietary imbalances prevalent in the rapidly evolving environment.

SELECTION OF CITATIONS
SEARCH DETAIL