Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Cells ; 11(22)2022 11 21.
Article in English | MEDLINE | ID: mdl-36429132

ABSTRACT

Hyperuricemia is a common feature in pregnancies compromised by pre-eclampsia, a pregnancy disease characterized by hypertension and proteinuria. The role of uric acid in the pathogenesis of pre-eclampsia remains largely unclear. The aim of this study was to investigate the effect of elevated uric acid serum levels during pregnancy on maternal blood pressure and neonatal outcome using two different murine knockout models. Non-pregnant liver-specific GLUT9 knockout (LG9KO) mice showed elevated uric acid serum concentrations but no hypertensive blood pressure levels. During pregnancy, however, blood pressure levels of these animals increased in the second and third trimester, and circadian blood pressure dipping was severely altered when compared to non-pregnant LG9KO mice. The impact of hyperuricemia on fetal development was investigated using a systemic GLUT9 knockout (G9KO) mouse model. Fetal hyperuricemia caused distinctive renal tissue injuries and, subsequently an impaired neonatal growth pattern. These findings provide strong evidence that hyperuricemia plays a major role in the pathogenesis of hypertensive pregnancy disorders such as pre-eclampsia. These novel insights may enable the development of preventive and therapeutic strategies for hyperuricemia-related diseases.


Subject(s)
Hypertension , Hyperuricemia , Pre-Eclampsia , Pregnancy Complications , Pregnancy , Humans , Female , Mice , Animals , Pre-Eclampsia/genetics , Uric Acid , Blood Pressure , Hypertension/complications , Phenotype
2.
Life (Basel) ; 12(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743923

ABSTRACT

Objectives: Management of severe postpartum hemorrhage (PPH) includes transcatheter pelvic arterial embolization (TAE). Data regarding subsequent fertility and obstetrical outcomes is limited, as most fertility outcomes derive from TAE in uterine fibroma. The purpose of our study was to evaluate the long-term outcomes of patients undergoing TAE, particularly concerning subsequent fertility and following pregnancies. Material and methods: We included 28 patients who underwent TAE for PPH at our institution between 2009 and 2018 in a retrospective cohort study. Data were assessed by reviewing patients' charts and by contacting the patients. Results: Ten patients had prophylactic balloon occlusion before cesarean section because of anticipated PPH, with planned hysterectomy by placenta increta/percreta. All these patients were excluded from the analysis regarding fertility. 16 (73%) patients reported having regular menstruation after TAE. In total, 11 women had no desire for subsequent pregnancy. Seven of the remaining 11 patients (63.6%) had a total of 13 spontaneous pregnancies, nine of these resulted in miscarriages. Four patients delivered a live baby (36.4%). Two of these (50%) had recurrent PPH and treatment was conservative. Of the patients with infertility (n = 4, 36.4%), two (18.1%) underwent assisted infertility treatment without success. Conclusion: Our study suggests that the fertility of patients undergoing TAE due to PPH is limited. In women who conceive, the risk for first trimester miscarriage as well as recurrent PPH seems to be increased. If this is a consequence of the underlying cause of PPH or the TAE remains unknown. Larger follow-up cohorts are needed. In the meantime, patients who desire pregnancy after TAE should be counseled accordingly.

3.
Cells ; 11(4)2022 02 11.
Article in English | MEDLINE | ID: mdl-35203284

ABSTRACT

BACKGROUND: Hyperuricemia is a common laboratory finding in pregnant women compromised by preeclampsia. A growing body of evidence suggests that uric acid is involved in the pathogenesis of preeclampsia. Glucose transporter 9 (GLUT9) is a high-capacity uric acid transporter. The aim of this study was to investigate the placental uric acid transport system, and to identify the (sub-) cellular localization of GLUT9. METHODS: Specific antibodies against GLUT9a and GLUT9b isoforms were raised, and human villous (placental) tissue was immunohistochemically stained. A systemic GLUT9 knockout (G9KO) mouse model was used to assess the placental uric acid transport capacity by measurements of uric acid serum levels in the fetal and maternal circulation. RESULTS: GLUT9a and GLUT9b co-localized with the villous (apical) membrane, but not with the basal membrane, of the syncytiotrophoblast. Fetal and maternal uric acid serum levels were closely correlated. G9KO fetuses showed substantially higher uric acid serum concentrations than their mothers. CONCLUSIONS: These findings demonstrate that the placenta efficiently maintains uric acid homeostasis, and that GLUT9 plays a key role in the placental uric acid transport system, at least in this murine model. Further studies investigating the role of the placental uric acid transport system in preeclampsia are eagerly needed.


Subject(s)
Glucose Transport Proteins, Facilitative , Hyperuricemia , Pre-Eclampsia , Animals , Female , Glucose Transport Proteins, Facilitative/genetics , Humans , Mice , Mice, Knockout , Placenta , Pregnancy , Uric Acid
4.
Front Cell Dev Biol ; 9: 622539, 2021.
Article in English | MEDLINE | ID: mdl-33869172

ABSTRACT

Peripartum cerebral hypoxia and ischemia, and intrauterine infection and inflammation, are detrimental for the precursor cells of the myelin-forming oligodendrocytes in the prematurely newborn, potentially leading to white matter injury (WMI) with long-term neurodevelopmental sequelae. Previous data show that hypomyelination observed in WMI is caused by arrested oligodendroglial maturation rather than oligodendrocyte-specific cell death. In a rat model of premature WMI, we have recently shown that small extracellular vesicles (sEV) derived from Wharton's jelly mesenchymal stromal cells (WJ-MSC) protect from myelination deficits. Thus, we hypothesized that sEV derived from WJ-MSC directly promote oligodendroglial maturation in oligodendrocyte precursor cells. To test this assumption, sEV were isolated from culture supernatants of human WJ-MSC by ultracentrifugation and co-cultured with the human immortalized oligodendrocyte precursor cell line MO3.13. As many regulatory functions in WMI have been ascribed to microRNA (miR) and as sEV are carriers of functional miR which can be delivered to target cells, we characterized and quantified the miR content of WJ-MSC-derived sEV by next-generation sequencing. We found that WJ-MSC-derived sEV co-localized with MO3.13 cells within 4 h. After 5 days of co-culture, the expression of myelin basic protein (MBP), a marker for mature oligodendrocytes, was significantly increased, while the oligodendrocyte precursor marker platelet-derived growth factor alpha (PDGFRα) was decreased. Notch and MAPK/ERK pathways known to inhibit oligodendrocyte maturation and differentiation were significantly reduced. The pathway enrichment analysis showed that the miR present in WJ-MSC-derived sEV target genes having key roles in the MAPK pathway. Our data strongly suggest that sEV from WJ-MSC directly drive the maturation of oligodendrocyte precursor cells by repressing Notch and MAPK/ERK signaling.

5.
BMJ Case Rep ; 14(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33692063

ABSTRACT

Congenital anomalies of the infrarenal inferior vena cava (IVC) are well described in adult life, however, little information exists on their associations in fetal life. Here, we describe a case of a monochorionic diamniotic (MCDA) twin pregnancy complicated by selective fetal growth restriction (sFGR) with an incidental finding of a double IVC in one child. In fetal life, variants of the infrarenal IVC are strongly associated with heart defects, which might suggest haemodynamic alterations or genetic causes, even more so in our case with MCDA twins complicated by sFGR.


Subject(s)
Fetofetal Transfusion , Pregnancy, Twin , Adult , Child , Female , Fetal Growth Retardation/diagnostic imaging , Humans , Pregnancy , Twins , Twins, Monozygotic , Ultrasonography, Prenatal , Vena Cava, Inferior/diagnostic imaging
6.
Front Immunol ; 10: 2624, 2019.
Article in English | MEDLINE | ID: mdl-31787985

ABSTRACT

Aims: Periodontal disease is associated with adverse pregnancy outcome, but the underlying pathophysiologic mechanism is still unknown. In this prospective, longitudinal, non-interventional case-control study, 45 women with preterm premature rupture of membranes and 26 controls with uncomplicated pregnancies were examined at three time-points (T1: 20-34 weeks of gestations; T2: within 48 h after delivery; T3: 4-6 weeks post partum). Examinations included subgingival, blood, vaginal, and placenta sampling for microbiologic, cytokine, and histology assessment. Objective of this study was to test the hypothesis that systemic inflammatory changes and not specific bacteria are predominantly involved in the association between periodontal disease and adverse pregnancy outcome. Results: Demographic data and gestational age at T1 were comparable between groups. While there was no correlation between vaginal and gingival fluid microbiome, cytokine levels in the assessed compartments differed between cases, and controls. Vaginal smears did not show a higher rate of abnormal flora in the cases at the onset of preterm premature rupture of membranes. Number and variety of bacteria in the case group placental membranes and vagina were higher, but these bacteria were not found in membranes at birth. Conclusions: On the basis of our results we speculate that an inflammatory pathway sequentially involving periodontal tissue, maternal serum, and finally vaginal compartment contributes to the underlying pathomechanism involved in preterm premature rupture of membranes associated with periodontitis.


Subject(s)
Fetal Membranes, Premature Rupture/etiology , Inflammation/complications , Periodontitis/complications , Adult , C-Reactive Protein/analysis , Cytokines/blood , Female , Humans , Longitudinal Studies , Middle Aged , Pregnancy , Prospective Studies , Young Adult
7.
Cell Physiol Biochem ; 53(3): 508-517, 2019.
Article in English | MEDLINE | ID: mdl-31502429

ABSTRACT

BACKGROUND/AIMS: Glucose transporter 9 (GLUT9/SLC2A9) is the major regulator of uric acid homeostasis in humans. Hyperuricemia due to impaired regulation by GLUT9 in pregnancy is closely associated with preeclampsia. While GLUT9 is expressed in two alternative splice variants, GLUT9a and GLUT9b, with different subcellular localizations, no functional differences of the two splice variants are known to date. The aim of this study was to investigate the function of both GLUT9 isoforms. METHODS: To characterize the different pharmacological properties of GLUT9a and GLUT9b electrophysiological studies of these isoforms and their modified variants, i.e. NmodGLUT9a and NmodGLUT9b, were performed using a Xenopus laevis oocytes model. Currents were measured by an electrode voltage clamp system. RESULTS: Functional experiments unveiled that uric acid transport mediated by GLUT9a but not GLUT9b is chloride-dependent: Replacing chloride by different anions resulted in a 3.43±0.63-fold increase of GLUT9a- but not GLUT9b-mediated currents. However, replacement by iodide resulted in a loss of current for GLUT9a but not GLUT9b. Iodide inhibits GLUT9a with an IC50 of 35.1±6.7µM. Modification of the N-terminal domain leads to a shift of the iodide IC50 to 1200±228µM. Using molecular docking studies, we identified two positively charged residues H23 and R31 in the N-terminal domain of hGLUT9a which can explain the observed functional differences. CONCLUSION: To the best of our knowledge, this is the first study showing that the N-terminal domain of hGLUT9a has a unique regulatory function and the potential to interact with small negatively charged ions like iodide. These findings may have significant implications in our understanding of hyperuricemia-associated diseases, specifically during pregnancy.


Subject(s)
Glucose Transport Proteins, Facilitative/metabolism , Pre-Eclampsia/blood , Alternative Splicing , Electrophysiology , Female , Humans , Hyperuricemia/blood , Hyperuricemia/metabolism , Iodides/metabolism , Molecular Docking Simulation , Pregnancy , Uric Acid/blood
8.
Tissue Cell ; 52: 65-70, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29857830

ABSTRACT

The loss of oligodendrocyte progenitor cells (OPC) is a hallmark of perinatal brain injury. Our aim was to develop an in vitro culture condition for human chorion-derived mesenchymal stem cells (MSC) that enhances their stem cell properties and their capability to differentiate towards OPC-like cells. MSC were grown either in serum replacement medium (SRM) or serum-containing medium (SM) and tested for their morphology, proliferation, secretome, migration, protein expression and differentiation into OPC-like cells. MSC cultured in SRM condition have distinct morphology/protein expression profile, increased cell proliferation/migration and capacity to differentiate into OPC-like cells.


Subject(s)
Cell Differentiation , Chorion/cytology , Mesenchymal Stem Cells/cytology , Oligodendrocyte Precursor Cells/cytology , Cell Culture Techniques , Culture Media, Conditioned , Female , Humans , Pregnancy
9.
BMC Genomics ; 19(1): 173, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29499643

ABSTRACT

BACKGROUND: Gestational disorders such as intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are main causes of poor perinatal outcomes worldwide. Both diseases are related with impaired materno-fetal nutrient transfer, but the crucial transport mechanisms underlying IUGR and PE are not fully elucidated. In this study, we aimed to identify membrane transporters highly associated with transplacental nutrient deficiencies in IUGR/PE. RESULTS: In silico analyses on the identification of differentially expressed nutrient transporters were conducted using seven eligible microarray datasets (from Gene Expression Omnibus), encompassing control and IUGR/PE placental samples. Thereby 46 out of 434 genes were identified as potentially interesting targets. They are involved in the fetal provision with amino acids, carbohydrates, lipids, vitamins and microelements. Targets of interest were clustered into a substrate-specific interaction network by using Search Tool for the Retrieval of Interacting Genes. The subsequent wet-lab validation was performed using quantitative RT-PCR on placentas from clinically well-characterized IUGR/PE patients (IUGR, n = 8; PE, n = 5; PE+IUGR, n = 10) and controls (term, n = 13; preterm, n = 7), followed by 2D-hierarchical heatmap generation. Statistical evaluation using Kruskal-Wallis tests was then applied to detect significantly different expression patterns, while scatter plot analysis indicated which transporters were predominantly influenced by IUGR or PE, or equally affected by both diseases. Identified by both methods, three overlapping targets, SLC7A7, SLC38A5 (amino acid transporters), and ABCA1 (cholesterol transporter), were further investigated at the protein level by western blotting. Protein analyses in total placental tissue lysates and membrane fractions isolated from disease and control placentas indicated an altered functional activity of those three nutrient transporters in IUGR/PE. CONCLUSIONS: Combining bioinformatic analysis, molecular biological experiments and mathematical diagramming, this study has demonstrated systematic alterations of nutrient transporter expressions in IUGR/PE. Among 46 initially targeted transporters, three significantly regulated genes were further investigated based on the severity and the disease specificity for IUGR and PE. Confirmed by mRNA and protein expression, the amino acid transporters SLC7A7 and SLC38A5 showed marked differences between controls and IUGR/PE and were regulated by both diseases. In contrast, ABCA1 may play an exclusive role in the development of PE.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Fetal Growth Retardation/pathology , Fusion Regulatory Protein 1, Light Chains/metabolism , Placenta/pathology , Pre-Eclampsia/pathology , ATP Binding Cassette Transporter 1/genetics , Adult , Amino Acid Transport System y+L , Amino Acid Transport Systems, Neutral/genetics , Case-Control Studies , Computational Biology/methods , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Fusion Regulatory Protein 1, Light Chains/genetics , Gene Expression Regulation, Developmental , Humans , Infant, Newborn , Placenta/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pregnancy , Young Adult
10.
Placenta ; 55: 94-99, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28623979

ABSTRACT

INTRODUCTION: Transplacental fetal glucose supply is predominantly regulated by glucose transporter-1 (GLUT1). Altered expression and/or function of GLUT1 may affect the intrauterine environment, which could compromise fetal development and may contribute to fetal programming. To date it is unknown whether placental GLUT1 is affected by preeclampsia, which is often associated with intrauterine growth restriction (IUGR). We addressed the hypothesis that preeclampsia leads to decreased expression and function of placental GLUT1. METHODS: Placentae were obtained following normal pregnancy and from pregnancies affected by preeclampsia. Washed villous tissue fragments were used to prepare syncytial microvillous (MVM) and basal plasma membranes (BM) microvesicles. GLUT1 protein and mRNA expression was assessed by western blot analysis and qPCR using Fast SYBR Green. A radio-labeled glucose up-take assay using placenta-derived syncytial microvesicles was used to analyze GLUT1 function. RESULTS: GLUT1 protein expression was significantly down-regulated in (apical) MVM of the syncytiotrophoblast in preeclampsia (n = 6) compared to controls (n = 6) (0.40 ± 0.04 versus 1.00 ± 0.06, arbitrary units, P < 0.001, Student's t-test), while GLUT1 mRNA expression did not show a significant difference. In addition, the functional assay in syncytial microvesicles showed a significantly decreased glucose transport activity in preeclampsia (61.78 ± 6.48%, P < 0.05) compared to controls. BM GLUT1 protein expression was unchanged and glucose up-take into BM microvesicles showed no differences between the preeclampsia and control groups. DISCUSSION: Our study shows for the first time that in preeclampsia placental GLUT1 expression and function are down-regulated at the apical plasma membrane of the syncytiotrophoblast. Further studies are needed to assess whether these changes occur also in vivo and contribute to the development of IUGR in preeclampsia.


Subject(s)
Glucose Transporter Type 1/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Adult , Case-Control Studies , Cell Membrane/metabolism , Down-Regulation , Female , Humans , Pregnancy
11.
Cytotherapy ; 19(7): 829-838, 2017 07.
Article in English | MEDLINE | ID: mdl-28457739

ABSTRACT

BACKGROUND AIMS: Wharton's jelly mesenchymal stromal cells (WJ-MSCs) might be ideal candidates to treat perinatal brain damage. Their secretome has been shown to have beneficial effects on neuroregeneration, in part through interaction with neural progenitor cells (NPCs). However, it remains unclear whether cell-to-cell contact decisively contributes to this positive effect. The objective of this study was to elucidate the mechanism through which differentiation in NPCs is triggered after exposure to WJ-MSCs. Furthermore, given that WJ-MSCs can be derived from term (tWJ-MSCs) or preterm (ptWJ-MSCs) deliveries and that WJ-MSCs might be used for transplantations independent of gestational age, the influence of tWJ-MSCs versus ptWJ-MSCs on the differentiation capacities of NPCs was studied. METHODS: The effect of tWJ-MSCs and ptWJ-MSCs on the expression of neuroglial markers in NPCs was assessed in co-culture (CC), conditioned medium (CM) or transwell CC experiments by immunocytochemistry, real-time polymerase chain reaction and Western blot. Additionally, mass spectrometry was used to study their secretomes. RESULTS: NPCs showed an increased expression of glial markers after CC with WJ-MSCs or exposure to WJ-MSC-CMs. CC had a more prominent effect on the expression of glial markers compared with CM or transwell CCs. tWJ-MSCs more strongly induced the expression of mature oligodendroglial markers compared with ptWJ-MSCs. A possible role in enhancing this maturation could be attributed to the laminin α2-subunit. CONCLUSIONS: Cell-to-cell contact between WJ-MSCs and NPCs induces oligodendrogenesis on NPCs, whereas trophic factor secretion is sufficient to promote astrogenesis. Thus, transplanting WJ-MSCs may promote endogenous neuroregeneration in perinatal brain damage.


Subject(s)
Mesenchymal Stem Cells/cytology , Neural Stem Cells/cytology , Animals , Biomarkers/metabolism , Cell Communication , Cell Differentiation , Cells, Cultured , Culture Media, Conditioned , Female , Humans , Mesenchymal Stem Cells/physiology , Neural Stem Cells/physiology , Neuroglia/cytology , Neuroglia/physiology , Oligodendroglia/cytology , Pregnancy , Rats , Umbilical Cord/cytology , Wharton Jelly/cytology
12.
Stem Cells Dev ; 26(4): 239-248, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27842457

ABSTRACT

The development of a mammalian brain is a complex and long-lasting process. Not surprisingly, preterm birth is the leading cause of death in newborns and children. Advances in perinatal care reduced mortality, but morbidity still represents a major burden. New therapeutic approaches are thus desperately needed. Given that mesenchymal stem/stromal cells (MSCs) emerged as a promising candidate for cell therapy, we transplanted MSCs derived from the Wharton's Jelly (WJ-MSCs) to reduce the burden of immature brain injury in a murine animal model. WJ-MSCs transplantation resulted in protective activity characterized by reduced myelin loss and astroglial activation. WJ-MSCs improved locomotor behavior as well. To address the underlying mechanisms, we tested the key regulators of responses to DNA-damaging agents, such as cyclic AMP-dependent protein kinase/calcium-dependent protein kinase (PKA/PKC), cyclin-dependent kinase (CDK), ataxia-telangiectasia-mutated/ATM- and Rad3-related (ATM/ATR) substrates, protein kinase B (Akt), and 14-3-3 binding protein partners. We characterized WJ-MSCs using a specific profiler polymerase chain reaction array. We provide evidence that WJ-MSCs target pivotal regulators of the cell fate such as CDK/14-3-3/Akt signaling. We identified leukemia inhibitory factor as a potential candidate of WJ-MSCs' induced modifications as well. We hypothesize that WJ-MSCs may exert adaptive responses depending on the type of injury they are facing, making them prominent candidates for cell therapy in perinatal injuries.


Subject(s)
Brain/pathology , Cell Lineage , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Neuroprotection , Wharton Jelly/cytology , 14-3-3 Proteins/metabolism , Animals , Animals, Newborn , Brain Injuries/genetics , Brain Injuries/pathology , Brain Injuries/therapy , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Profiling , Humans , Nerve Growth Factors/metabolism , Neuroprotection/genetics , Rats, Wistar , Signal Transduction/genetics
13.
Stem Cells Dev ; 25(16): 1234-42, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27392671

ABSTRACT

Preterm white matter injury (WMI) is an important cause for long-term disability. Stem cell transplantation has been proposed as a novel therapeutic approach. However, intracerebral transplantation is not feasible for clinical purpose in newborns. Intranasal delivery of cells to the brain might be a promising, noninvasive therapeutic approach to restore the damaged brain. Therefore, our goal is to study the remyelinating potential of human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) after intranasal delivery. Wistar rat pups, previously brain-damaged by a combined hypoxic-ischemic and inflammatory insult, received hWJ-MSC (150,000 cells in 3 µL) that were intranasally delivered twice to each nostril (600,000 cells total). WMI was assessed by immunohistochemistry and western blot for myelination, astrogliosis, and microgliosis. The expression of preoligodendrocyte markers, and neurotrophic factors, was analyzed by real-time polymerase chain reaction. Animals treated with intranasally delivered hWJ-MSC showed increased myelination and decreased gliosis compared to untreated animals. hWJ-MSC may, therefore, modulate the activation of microglia and astrocytes, resulting in a change of the brain microenvironment, which facilitates the maturation of oligodendrocyte lineage cells. This is the first study to show that intranasal delivery of hWJ-MSC in rats prevented hypomyelination and microgliosis in a model of WMI in the premature rat brain. Further studies should address the dose and frequency of administration.


Subject(s)
Administration, Intranasal , Brain Injuries/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Myelin Sheath/metabolism , Umbilical Cord/cytology , Animals , Animals, Newborn , Biomarkers/metabolism , Brain Injuries/complications , Brain Injuries/pathology , Brain Ischemia/complications , Brain Ischemia/pathology , Brain Ischemia/therapy , Cell Nucleus/metabolism , Cell Shape , Humans , Inflammation/complications , Inflammation/pathology , Inflammation/therapy , Nerve Growth Factors/metabolism , Oligodendroglia/pathology , Rats, Wistar , White Matter/pathology
14.
Transfusion ; 56(6): 1406-12, 2016 06.
Article in English | MEDLINE | ID: mdl-27184144

ABSTRACT

BACKGROUND: With increasing demand for umbilical cord blood units (CBUs) with total nucleated cell (TNC) counts of more than 150 × 10(7) , preshipping assessment is mandatory. Umbilical cord blood processing requires aseptic techniques and laboratories with specific air quality and cleanliness. Our aim was to establish a fast and efficient method for determining TNC counts at the obstetric ward without exposing the CBU to the environment. STUDY DESIGN AND METHODS: Data from a total of 151 cord blood donations at a single procurement site were included in this prospective study. We measured TNC counts in cord blood aliquots taken from the umbilical cord (TNCCord ), from placenta (TNCPlac ), and from a tubing segment of the sterile collection system (TNCTS ). TNC counts were compared to reference TNC counts in the CBU which were ascertained at the cord blood bank (TNCCBU ). RESULTS: TNCTS counts (173 ± 33 × 10(7) cells; calculated for 1 unit) correlated fully with the TNCCBU reference counts (166 ± 33 × 10(7) cells, Pearson's r = 0.97, p < 0.0001). In contrast, TNCCord and TNCPlac counts were more disparate from the reference (r = 0.92 and r = 0.87, respectively). CONCLUSIONS: A novel method of measuring TNC counts in tubing segments from the sterile cord blood collection system allows rapid and correct identification of CBUs with high cell numbers at the obstetric ward without exposing cells to the environment. This approach may contribute to cost efficacy as only CBUs with satisfactory TNC counts need to be shipped to the cord blood bank.


Subject(s)
Blood Donors , Cell Count , Fetal Blood/cytology , Umbilical Cord/blood supply , Blood Banking/methods , Female , Humans , Placenta/blood supply , Point-of-Care Systems , Pregnancy , Prospective Studies
15.
Mol Hum Reprod ; 22(6): 442-56, 2016 06.
Article in English | MEDLINE | ID: mdl-26931579

ABSTRACT

STUDY HYPOTHESIS: Using optimized conditions, primary trophoblast cells isolated from human term placenta can develop a confluent monolayer in vitro, which morphologically and functionally resembles the microvilli structure found in vivo. STUDY FINDING: We report the successful establishment of a confluent human primary trophoblast monolayer using pre-coated polycarbonate inserts, where the integrity and functionality was validated by cell morphology, biophysical features, cellular marker expression and secretion, and asymmetric glucose transport. WHAT IS KNOWN ALREADY: Human trophoblast cells form the initial barrier between maternal and fetal blood to regulate materno-fetal exchange processes. Although the method for isolating pure human cytotrophoblast cells was developed almost 30 years ago, a functional in vitro model with primary trophoblasts forming a confluent monolayer is still lacking. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Human term cytotrophoblasts were isolated by enzymatic digestion and density gradient separation. The purity of the primary cells was evaluated by flow cytometry using the trophoblast-specific marker cytokeratin 7, and vimentin as an indicator for potentially contaminating cells. We screened different coating matrices for high cell viability to optimize the growth conditions for primary trophoblasts on polycarbonate inserts. During culture, cell confluency and polarity were monitored daily by determining transepithelial electrical resistance (TEER) and permeability properties of florescent dyes. The time course of syncytia-related gene expression and hCG secretion during syncytialization were assessed by quantitative RT-PCR and enzyme-linked immunosorbent assay, respectively. The morphology of cultured trophoblasts after 5 days was determined by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally, glucose transport studies were performed on the polarized trophoblasts in the same system. MAIN RESULTS AND THE ROLE OF CHANCE: During 5-day culture, the highly pure trophoblasts were cultured on inserts coated with reconstituted basement membrane matrix . They exhibited a confluent polarized monolayer, with a modest TEER and a size-dependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ∼400-70 000 Da). The syncytialization progress was characterized by gradually increasing mRNA levels of fusogen genes and elevating hCG secretion. SEM analyses confirmed a confluent trophoblast layer with numerous microvilli, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein 1 (ZO-1) and the membrane proteins ATP-binding cassette transporter A1 (ABCA1) and glucose transporter 1 (GLUT1). Applying this model to study the bidirectional transport of a non-metabolizable glucose derivative indicated a carrier-mediated placental glucose transport mechanism with asymmetric kinetics. LIMITATIONS, REASONS FOR CAUTION: The current study is only focused on primary trophoblast cells isolated from healthy placentas delivered at term. It remains to be evaluated whether this system can be extended to pathological trophoblasts isolated from diverse gestational diseases. WIDER IMPLICATIONS OF THE FINDINGS: These findings confirmed the physiological properties of the newly developed human trophoblast barrier, which can be applied to study the exchange of endobiotics and xenobiotics between the maternal and fetal compartment, as well as intracellular metabolism, paracellular contributions and regulatory mechanisms influencing the vectorial transport of molecules. LARGE-SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTERESTS: This study was supported by the Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland, and the Swiss National Science Foundation (grant no. 310030_149958, C.A.). All authors declare that their participation in the study did not involve factual or potential conflicts of interests.


Subject(s)
Glucose/metabolism , Placenta/metabolism , Trophoblasts/metabolism , Biological Transport/genetics , Biological Transport/physiology , Cells, Cultured , Female , Humans , Immunohistochemistry , Maternal-Fetal Exchange/genetics , Maternal-Fetal Exchange/physiology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Placenta/ultrastructure , Pregnancy , Trophoblasts/ultrastructure
16.
J Am Soc Nephrol ; 27(5): 1426-36, 2016 05.
Article in English | MEDLINE | ID: mdl-26376857

ABSTRACT

A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome.


Subject(s)
Glycine/analogs & derivatives , Monocarboxylic Acid Transporters/genetics , Mutation , Adult , Aged , Female , Glycine/metabolism , Glycosuria/genetics , Humans , Male , Middle Aged , Pedigree , Young Adult
17.
Article in English | MEDLINE | ID: mdl-26482184

ABSTRACT

The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJ-MSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.


Subject(s)
Amniotic Fluid/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Wharton Jelly/cytology , Animals , Brain Diseases/therapy , Cell Differentiation , Cell Movement , Diabetes Mellitus/therapy , Disease Models, Animal , Humans , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Regeneration , Skin/injuries , Skin Physiological Phenomena
18.
Placenta ; 36(9): 1018-23, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26215381

ABSTRACT

INTRODUCTION: The knowledge about adaptive mechanisms of monochorionic placentas to fulfill the demands of two instead of one fetus is largely speculative. The aim of our study was to investigate the impact of chorionicity on birth weight and placental weight in twin pregnancies. METHODS: Forty Monochorionic (MC) and 43 dichorionic (DC) twin pregnancies were included in this retrospective study. Individual and total (sum of both twins) birth weights, placental weights ratios between placental and birth weights and observed-to-expected (O/E)-ratios were calculated and analyzed. Additionally, we investigated whether in twin pregnancies placental and birth weights follow the law of allometric metabolic scaling. RESULTS: MC pregnancies showed higher placental O/E-ratios than DC ones (2.25 ± 0.85 versus 1.66 ± 0.61; p < 0.05), whereas the total neonatal birth weight O/E-ratios were not different. In DC twins total placental weights correlated significantly with gestational age (r = 0.74, p < 0.001), but not in MC twins. Analysis of deliveries ≤32 weeks revealed that the placenta to birth weight ratio in MC twins was higher than in matched DC twins (0.49 ± 0.3 versus 0.24 ± 0.03; p = 0.03). Allometric metabolic scaling revealed that dichorionic twin placentas scale with birth weight, while the monochorionic ones do not. DISCUSSION: The weight of MC placentas compared to that of DC is not gestational age dependent in the third trimester. Therefore an early accelerated placental growth pattern has to be postulated which leads to an excess placental mass particularly below 32 weeks of gestation. The monochorionic twins do not follow allometric metabolic scaling principle making them more vulnerable to placental compromise.


Subject(s)
Birth Weight , Placenta/physiology , Pregnancy, Twin/physiology , Twins, Monozygotic , Adult , Biometry , Female , Humans , Organ Size , Pregnancy , Retrospective Studies , Young Adult
19.
J Matern Fetal Neonatal Med ; 28(4): 464-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24803009

ABSTRACT

OBJECTIVE: The aim of the study was to compare the neuroglial phenotype of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) from pregnancies complicated with preeclampsia and gestational age (GA)-matched controls. METHODS: WJ-MSC were isolated from umbilical cords from both groups and analyzed for the cell surface expression of MSC markers and the gene and protein expression of neuroglial markers. RESULTS: All WJ cells were highly positive for the MSC markers CD105, CD90 and CD73, but negative for markers specific for hematopoietic (CD34) and immunological cells (CD45, CD14, CD19 and HLA-DR). WJ-MSC from both groups expressed neuroglial markers (MAP-2, GFAP, MBP, Musashi-1 and Nestin) at the mRNA and protein level. The protein expressions of neuronal (MAP-2) and oligodendrocytic (MBP) markers were significantly increased in WJ-MSC from preeclampsia versus GA-matched controls. CONCLUSIONS: WJ-MSC from preeclamptic patients are possibly more committed to neuroglial differentiation through the activation of pathways involved both in the pathophysiology of the disease and in neurogenesis.


Subject(s)
Biomarkers/metabolism , Mesenchymal Stem Cells/metabolism , Neuroglia/metabolism , Pre-Eclampsia/metabolism , Wharton Jelly/metabolism , Adult , Case-Control Studies , Cell Differentiation , Cells, Cultured , Female , Humans , Infant, Newborn , Mesenchymal Stem Cells/pathology , Pre-Eclampsia/pathology , Pregnancy , Umbilical Cord/metabolism , Umbilical Cord/pathology , Wharton Jelly/pathology , Young Adult
20.
PLoS One ; 9(10): e108852, 2014.
Article in English | MEDLINE | ID: mdl-25286413

ABSTRACT

The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.


Subject(s)
Glucose Transport Proteins, Facilitative/chemistry , Glucose Transport Proteins, Facilitative/isolation & purification , Oocytes/metabolism , Organic Anion Transporters/chemistry , Organic Anion Transporters/isolation & purification , Animals , Blotting, Western , Cell Membrane/metabolism , Chromatography, Affinity , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation , Glucose Transport Proteins, Facilitative/metabolism , Humans , Models, Molecular , Organic Anion Transporters/metabolism , Phylogeny , Silver Staining , Structural Homology, Protein , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...