Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Front Public Health ; 12: 1404243, 2024.
Article in English | MEDLINE | ID: mdl-38784596

ABSTRACT

The world has seen unprecedented gains in the global genomic surveillance capacities for pathogens with pandemic and epidemic potential within the last 4 years. To strengthen and sustain the gains made, WHO is working with countries and partners to implement the Global Genomic Surveillance Strategy for Pathogens with Pandemic and Epidemic Potential 2022-2032. A key technical product developed through these multi-agency collaborative efforts is a genomics costing tool (GCT), as sought by many countries. This tool was developed by five institutions - Association of Public Health Laboratories, FIND, The Global Fund to Fight AIDS, Tuberculosis and Malaria, UK Health Security Agency, and the World Health Organization. These institutions developed the GCT to support financial planning and budgeting for SARS-CoV-2 next-generation sequencing activities, including bioinformatic analysis. The tool costs infrastructure, consumables and reagents, human resources, facility and quality management. It is being used by countries to (1) obtain costs of routine sequencing and bioinformatics activities, (2) optimize available resources, and (3) build an investment case for the scale-up or establishment of sequencing and bioinformatics activities. The tool has been validated and is available in English and Russian at https://www.who.int/publications/i/item/9789240090866. This paper aims to highlight the rationale for developing the tool, describe the process of the collaborative effort in developing the tool, and describe the utility of the tool to countries.


Subject(s)
COVID-19 , Genomics , High-Throughput Nucleotide Sequencing , SARS-CoV-2 , Humans , High-Throughput Nucleotide Sequencing/economics , COVID-19/economics , COVID-19/prevention & control , SARS-CoV-2/genetics , Computational Biology , Civil Defense/economics , Pandemics/economics , Global Health
2.
PLoS Comput Biol ; 19(6): e1011129, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37347768

ABSTRACT

The increasing availability of high-throughput sequencing (frequently termed next-generation sequencing (NGS)) data has created opportunities to gain deeper insights into the mechanisms of a number of diseases and is already impacting many areas of medicine and public health. The area of infectious diseases stands somewhat apart from other human diseases insofar as the relevant genomic data comes from the microbes rather than their human hosts. A particular concern about the threat of antimicrobial resistance (AMR) has driven the collection and reporting of large-scale datasets containing information from microbial genomes together with antimicrobial susceptibility test (AST) results. Unfortunately, the lack of clear standards or guiding principles for the reporting of such data is hampering the field's advancement. We therefore present our recommendations for the publication and sharing of genotype and phenotype data on AMR, in the form of 10 simple rules. The adoption of these recommendations will enhance AMR data interoperability and help enable its large-scale analyses using computational biology tools, including mathematical modelling and machine learning. We hope that these rules can shed light on often overlooked but nonetheless very necessary aspects of AMR data sharing and enhance the field's ability to address the problems of understanding AMR mechanisms, tracking their emergence and spread in populations, and predicting microbial susceptibility to antimicrobials for diagnostic purposes.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Genome, Microbial , Genotype , Phenotype
3.
Emerg Microbes Infect ; 12(1): 2178243, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36752055

ABSTRACT

Diagnostic development must occur in parallel with drug development to ensure the longevity of new treatment compounds. Despite an increasing number of novel and repurposed anti-tuberculosis compounds and regimens, there remains a large number of drugs for which no rapid and accurate molecular diagnostic option exists. The lack of rapid drug susceptibility testing for linezolid, bedaquiline, clofazimine, the nitroimidazoles (i.e pretomanid and delamanid) and pyrazinamide at any level of the healthcare system compromises the effectiveness of current tuberculosis and drug-resistant tuberculosis treatment regimens. In the context of current WHO tuberculosis treatment guidelines as well as promising new regimens, we identify the key diagnostic gaps for initial and follow-on tests to diagnose emerging drug resistance and aid in regimen selection. Additionally, we comment on potential gene targets for inclusion in rapid molecular drug susceptibility assays and sequencing assays for novel and repurposed drug compounds currently prioritized in current regimens, and evaluate the feasibility of mutation detection given the design of existing technologies. Based on current knowledge, we also propose design priorities for next generation molecular assays to support triage of tuberculosis patients to appropriate and effective treatment regimens. We encourage assay developers to prioritize development of these key molecular assays and support the continued evolution, uptake, and utility of sequencing to build knowledge of tuberculosis resistance mechanisms and further inform rapid treatment decisions in order to curb resistance to critical drugs in current regimens and achieve End TB targets.Trial registration: ClinicalTrials.gov identifier: NCT05117788..


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Microbial Sensitivity Tests , Pathology, Molecular , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy
4.
Sci Rep ; 12(1): 17741, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273016

ABSTRACT

Universal drug susceptibility testing (DST) for tuberculosis is a major goal of the END TB strategy. PCR-based molecular diagnostic tests have been instrumental in increasing DST globally and several assays have now been endorsed by the World Health Organization (WHO) for use in the diagnosis of drug resistance. These endorsed assays, however, each interrogate a limited number of mutations associated with resistance, potentially limiting their sensitivity compared to sequencing-based methods. We applied an in silico method to compare the sensitivity and specificity of WHO-endorsed molecular based diagnostics to the mutation set identified by the WHO mutations catalogue using phenotypic DST as the reference. We found that, in silico, the mutation sets used by probe-based molecular diagnostic tests to identify rifampicin, isoniazid, pyrazinamide, levofloxacin, moxifloxacin, amikacin, capreomycin and kanamycin resistance produced similar sensitivities and specificities to the WHO mutation catalogue. PCR-based diagnostic tests were most sensitive for drugs where mechanisms of resistance are well established and localised to small genetic regions or a few prevalent mutations. Approaches using sequencing technologies can provide advantages for drugs where our knowledge of resistance is limited, or where complex resistance signatures exist.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Isoniazid , Pyrazinamide , Rifampin , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Microbial Sensitivity Tests , Capreomycin , Mycobacterium tuberculosis/genetics , Amikacin , Levofloxacin , Moxifloxacin , Genotype , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/genetics , World Health Organization
5.
Lancet Microbe ; 3(4): e265-e273, 2022 04.
Article in English | MEDLINE | ID: mdl-35373160

ABSTRACT

Background: Molecular diagnostics are considered the most promising route to achieving rapid, universal drug susceptibility testing for Mycobacterium tuberculosiscomplex (MTBC). We aimed to generate a WHO endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: A candidate gene approach was used to identify mutations as associated with resistance, or consistent with susceptibility, for 13 WHO endorsed anti-tuberculosis drugs. 38,215 MTBC isolates with paired whole-genome sequencing and phenotypic drug susceptibility testing data were amassed from 45 countries. For each mutation, a contingency table of binary phenotypes and presence or absence of the mutation computed positive predictive value, and Fisher's exact tests generated odds ratios and Benjamini-Hochberg corrected p-values. Mutations were graded as Associated with Resistance if present in at least 5 isolates, if the odds ratio was >1 with a statistically significant corrected p-value, and if the lower bound of the 95% confidence interval on the positive predictive value for phenotypic resistance was >25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: 15,667 associations were computed for 13,211 unique mutations linked to one or more drugs. 1,149/15,667 (7·3%) mutations were classified as associated with phenotypic resistance and 107/15,667 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was >80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were classified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: This first WHO endorsed catalogue of molecular targets for MTBC drug susceptibility testing provides a global standard for resistance interpretation. Its existence should encourage the implementation of molecular diagnostics by National Tuberculosis Programmes. Funding: UNITAID, Wellcome, MRC, BMGF.


Subject(s)
Ethambutol , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Drug Resistance , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , World Health Organization
6.
J Clin Microbiol ; 58(10)2020 09 22.
Article in English | MEDLINE | ID: mdl-32759357

ABSTRACT

Molecular tests for tuberculosis (TB) have the potential to help reach the three million people with TB who are undiagnosed or not reported each year and to improve the quality of care TB patients receive by providing accurate, quick results, including rapid drug-susceptibility testing. The World Health Organization (WHO) has recommended the use of molecular nucleic acid amplification tests (NAATs) tests for TB detection instead of smear microscopy, as they are able to detect TB more accurately, particularly in patients with paucibacillary disease and in people living with HIV. Importantly, some of these WHO-endorsed tests can detect mycobacterial gene mutations associated with anti-TB drug resistance, allowing clinicians to tailor effective TB treatment. Currently, a wide array of molecular tests for TB detection is being developed and evaluated, and while some tests are intended for reference laboratory use, others are being aimed at the point-of-care and peripheral health care settings. Notably, there is an emergence of molecular tests designed, manufactured, and rolled out in countries with high TB burden, of which some are explicitly aimed for near-patient placement. These developments should increase access to molecular TB testing for larger patient populations. With respect to drug susceptibility testing, NAATs and next-generation sequencing can provide results substantially faster than traditional phenotypic culture. Here, we review recent advances and developments in molecular tests for detecting TB as well as anti-TB drug resistance.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Humans , Microbial Sensitivity Tests , Molecular Diagnostic Techniques , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis
7.
J Clin Microbiol ; 58(10)2020 09 22.
Article in English | MEDLINE | ID: mdl-32727827

ABSTRACT

Targeted next-generation sequencing (tNGS) has emerged as a comprehensive alternative to existing methods for drug susceptibility testing (DST) of Mycobacterium tuberculosis from patient sputum samples for clinical diagnosis of drug-resistant tuberculosis (DR-TB). However, the complexity of sequencing platforms has limited their uptake in low-resource settings. The goal of this study was to evaluate the use of the tNGS-based DST solution Genoscreen Deeplex Myc-TB, for use on the compact, low-cost Oxford Nanopore Technologies MinION sequencer. One hundred four DNA samples extracted from smear-positive sputum sediments, previously sequenced using the Deeplex assay on an Illumina MiniSeq, were resequenced on MinION after applying a custom library preparation. MinION read quality, mapping statistics, and variant calling were computed using an in-house pipeline and compared to the reference MiniSeq data. The average percentage of MinION reads mapped to an H37RV reference genome was 90.8%, versus 99.5% on MiniSeq. The mean depths of coverage were 4,151× and 4,177× on MinION and MiniSeq, respectively, with heterogeneous distribution across targeted genes. Composite reference coverage breadth was >99% for both platforms. We observed full concordance between technologies in reporting the clinically relevant drug-resistant markers, including full gene deletions. In conclusion, we demonstrated that the workflow and sequencing data obtained from Deeplex on MinION are comparable to those for the MiniSeq, despite the higher raw error rates on MinION, with the added advantage of MinION's portability, versatility, and low capital costs. Targeted NGS on MinION is a promising DST solution for rapidly providing clinically relevant data to manage complex DR-TB cases.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , High-Throughput Nucleotide Sequencing , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA , Tuberculosis, Multidrug-Resistant/diagnosis
8.
Diagn Microbiol Infect Dis ; 98(2): 115096, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32623232

ABSTRACT

Robust clinical specimen nucleic acid extraction instrumentation and methods are critical to the performance of downstream molecular diagnostics for the diagnosis of drug-resistant tuberculosis (DR-TB). Currently, there is a high level of interest in sequencing-based solutions for rapid and comprehensive DR-TB testing from primary specimens (i.e., sputum). However, there is no standardized or fully automated sputum extraction system that has been widely implemented for use with Mycobacterium tuberculosis complex-containing sputum specimens. For sequencing-based technologies to be widely adopted in clinical laboratory settings in low- and middle-income countries, automated extraction technologies will be important to enhance scalability and reliability and to standardize performance of the downstream assays. Additionally, the ease of automatic technologies allows for faster uptake in laboratories currently without the expertise or infrastructure to perform manual extractions at the same automated throughput. This work is intended to provide an initial specification comparison of available automated DNA extraction systems that could serve as front-end components for existing and future sequencing approaches and provide the framework for future evaluations.


Subject(s)
Mycobacterium tuberculosis/genetics , Pathology, Molecular/methods , Sequence Analysis, DNA/methods , Tuberculosis, Multidrug-Resistant/diagnosis , Automation, Laboratory , DNA, Bacterial , Humans , Reproducibility of Results , Sputum/microbiology
9.
Nat Rev Microbiol ; 17(9): 533-545, 2019 09.
Article in English | MEDLINE | ID: mdl-31209399

ABSTRACT

Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly progressed from a research tool to a clinical application for the diagnosis and management of tuberculosis and in public health surveillance. This development has been facilitated by drastic drops in cost, advances in technology and concerted efforts to translate sequencing data into actionable information. There is, however, a risk that, in the absence of a consensus and international standards, the widespread use of WGS technology may result in data and processes that lack harmonization, comparability and validation. In this Review, we outline the current landscape of WGS pipelines and applications, and set out best practices for M. tuberculosis WGS, including standards for bioinformatics pipelines, curated repositories of resistance-causing variants, phylogenetic analyses, quality control and standardized reporting.


Subject(s)
Computational Biology/methods , Computational Biology/standards , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology , Whole Genome Sequencing/methods , Whole Genome Sequencing/standards , Drug Resistance, Bacterial , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Molecular Epidemiology/methods , Molecular Epidemiology/standards , Mycobacterium tuberculosis/genetics , Phylogeny , Practice Guidelines as Topic , Tuberculosis/epidemiology
10.
PLoS Med ; 16(4): e1002794, 2019 04.
Article in English | MEDLINE | ID: mdl-31039166

ABSTRACT

BACKGROUND: Accurate, comprehensive, and timely detection of drug-resistant tuberculosis (TB) is essential to inform patient treatment and enable public health surveillance. This is crucial for effective control of TB globally. Whole-genome sequencing (WGS) and targeted next-generation sequencing (NGS) approaches have potential as rapid in vitro diagnostics (IVDs), but the complexity of workflows, interpretation of results, high costs, and vulnerability of instrumentation have been barriers to broad uptake outside of reference laboratories, especially in low- and middle-income countries. A new, solid-state, tabletop sequencing instrument, Illumina iSeq100, has the potential to decentralize NGS for individual patient care. METHODS AND FINDINGS: In this study, we evaluated WGS and targeted NGS for TB on both the new iSeq100 and the widely used MiSeq (both manufactured by Illumina) and compared sequencing performance, costs, and usability. We utilized DNA libraries produced from Mycobacterium tuberculosis clinical isolates for the evaluation. We conducted WGS on three strains and observed equivalent uniform genome coverage with both platforms and found the depth of coverage obtained was consistent with the expected data output. Utilizing the standardized, cloud-based ReSeqTB bioinformatics pipeline for variant analysis, we found the two platforms to have 94.0% (CI 93.1%-94.8%) agreement, in comparison to 97.6% (CI 97%-98.1%) agreement for the same libraries on two MiSeq instruments. For the targeted NGS approach, 46 M. tuberculosis-specific amplicon libraries had 99.6% (CI 98.0%-99.9%) agreement between the iSeq100 and MiSeq data sets in drug resistance-associated SNPs. The upfront capital costs are almost 5-fold lower for the iSeq100 ($19,900 USD) platform in comparison to the MiSeq ($99,000 USD); however, because of difference in the batching capabilities, the price per sample for WGS was higher on the iSeq100. For WGS of M. tuberculosis at the minimum depth of coverage of 30x, the cost per sample on the iSeq100 was $69.44 USD versus $28.21 USD on the MiSeq, assuming a 2 × 150 bp run on a v3 kit. In terms of ease of use, the sequencing workflow of iSeq100 has been optimized to only require 27 minutes total of hands-on time pre- and post-run, and the maintenance is simplified by a single-use cartridge-based fluidic system. As these are the first sequencing attempts on the iSeq100 for M. tuberculosis, the sequencing pool loading concentration still needs optimization, which will affect sequencing error and depth of coverage. Additionally, the costs are based on current equipment and reagent costs, which are subject to change. CONCLUSIONS: The iSeq100 instrument is capable of running existing TB WGS and targeted NGS library preparations with comparable accuracy to the MiSeq. The iSeq100 has reduced sequencing workflow hands-on time and is able to deliver sequencing results in <24 hours. Reduced capital and maintenance costs and lower-throughput capabilities also give the iSeq100 an advantage over MiSeq in settings of individualized care but not in high-throughput settings such as reference laboratories, where sample batching can be optimized to minimize cost at the expense of workflow complexity and time.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA , Tuberculosis, Multidrug-Resistant/microbiology , Cost-Benefit Analysis , DNA, Bacterial/analysis , High-Throughput Nucleotide Sequencing/economics , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , Humans , Reproducibility of Results , Sequence Analysis, DNA/economics , Sequence Analysis, DNA/instrumentation , Sequence Analysis, DNA/methods , Time Factors
11.
J Clin Med ; 9(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906163

ABSTRACT

Most diagnostic tests for tuberculosis (TB) rely on sputum samples, which are difficult to obtain and have low sensitivity in immunocompromised patients, patients with disseminated TB, and children, delaying treatment initiation. The World Health Organization (WHO) calls for the development of a rapid, biomarker-based, non-sputum test capable of detecting all forms of TB at the point-of-care to enable immediate treatment initiation. Lipoarabinomannan (LAM) is the only WHO-endorsed TB biomarker that can be detected in urine, an easily collected sample. This status update discusses the characteristics of LAM as a biomarker, describes the performance of first-generation urine LAM tests and reasons for slow uptake, and presents considerations for developing the next generation of more sensitive and impactful tests. Next-generation urine LAM tests have the potential to reach adult and pediatric patients regardless of HIV status or site of infection and facilitate global TB control. Implementation and scale-up of existing LAM tests and development of next-generation assays should be prioritized.

12.
Pathog Dis ; 76(4)2018 06 01.
Article in English | MEDLINE | ID: mdl-29846561

ABSTRACT

There are many resources available to mycobacterial researchers, including culture collections around the world that distribute biomaterials to the general scientific community, genomic and clinical databases, and powerful bioinformatics tools. However, many of these resources may be unknown to the research community. This review article aims to summarize and publicize many of these resources, thus strengthening the quality and reproducibility of mycobacterial research by providing the scientific community access to authenticated and quality-controlled biomaterials and a wealth of information, analytical tools and research opportunities.


Subject(s)
Biological Specimen Banks , Biomedical Research/methods , Computational Biology/methods , Databases, Genetic , Mycobacterium Infections/microbiology , Mycobacterium/genetics , Mycobacterium/pathogenicity , Humans , Reproducibility of Results
13.
PLoS Biol ; 16(12): e3000099, 2018 12.
Article in English | MEDLINE | ID: mdl-30596645

ABSTRACT

A personalized approach based on a patient's or pathogen's unique genomic sequence is the foundation of precision medicine. Genomic findings must be robust and reproducible, and experimental data capture should adhere to findable, accessible, interoperable, and reusable (FAIR) guiding principles. Moreover, effective precision medicine requires standardized reporting that extends beyond wet-lab procedures to computational methods. The BioCompute framework (https://w3id.org/biocompute/1.3.0) enables standardized reporting of genomic sequence data provenance, including provenance domain, usability domain, execution domain, verification kit, and error domain. This framework facilitates communication and promotes interoperability. Bioinformatics computation instances that employ the BioCompute framework are easily relayed, repeated if needed, and compared by scientists, regulators, test developers, and clinicians. Easing the burden of performing the aforementioned tasks greatly extends the range of practical application. Large clinical trials, precision medicine, and regulatory submissions require a set of agreed upon standards that ensures efficient communication and documentation of genomic analyses. The BioCompute paradigm and the resulting BioCompute Objects (BCOs) offer that standard and are freely accessible as a GitHub organization (https://github.com/biocompute-objects) following the "Open-Stand.org principles for collaborative open standards development." With high-throughput sequencing (HTS) studies communicated using a BCO, regulatory agencies (e.g., Food and Drug Administration [FDA]), diagnostic test developers, researchers, and clinicians can expand collaboration to drive innovation in precision medicine, potentially decreasing the time and cost associated with next-generation sequencing workflow exchange, reporting, and regulatory reviews.


Subject(s)
Computational Biology/methods , Sequence Analysis, DNA/methods , Animals , Communication , Computational Biology/standards , Genome , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Precision Medicine/trends , Reproducibility of Results , Sequence Analysis, DNA/standards , Software , Workflow
15.
Neuroepidemiology ; 40(1): 30-5, 2013.
Article in English | MEDLINE | ID: mdl-23075770

ABSTRACT

Multiple sclerosis (MS) is a chronic and progressively disabling inflammatory autoimmune disorder of the central nervous system. MS has a multifactorial etiology and is triggered by environmental factors in individuals with complex genetic risk profiles. The epidemiology of MS changes with the spatial and temporal distribution of these genetic and nongenetic risk factors. This population-based matched case-control study aimed to determine the risk factors for MS in Kuwait. From May 2 to 9, 2010, we enrolled 101 confirmed MS cases using the list frame maintained by the Multiple Sclerosis Association of Kuwait. For each case, two population controls individually matched for age (±2 years), gender and nationality were selected. Data on demographic, socioeconomic variables, potential genetic and environmental factors were collected using a structured questionnaire. For a case, the questions were directed to the period that preceded the recognition of the disease, while for each of the two matched controls, a date of 'pseudodiagnosis' of MS was established, i.e. the date on which the control subject was of the same age as his/her matched case was at MS diagnosis and accordingly questions were directed to the preceding period. The multivariable conditional logistic regression model showed that compared with controls, the cases were significantly more likely to have a family history of MS [matched odds ratio (OR)(adj) = 6.7; 95% confidence interval (95% CI): 2.5-18.0; p < 0.001] or have suffered from a head trauma in the past before MS diagnosis (matched OR(adj) = 2.6; 95% CI: 1.2-5.5; p = 0.014). Furthermore, compared with controls, cases were significantly more likely to have stayed in Kuwait during the Iraqi invasion of 1990 (matched OR(adj) = 1.8; 95% CI: 1.1-3.5; p = 0.022). This study showed that a family history of MS, a history of head injury, and presence in Kuwait at the time of the Iraqi invasion of 1990 were associated with a significantly increased MS risk. Future retrospective cohort studies by using existing biological and epidemiological databases may provide a clue to MS etiology.


Subject(s)
Multiple Sclerosis/diagnosis , Multiple Sclerosis/epidemiology , Population Surveillance , Adult , Case-Control Studies , Craniocerebral Trauma/diagnosis , Craniocerebral Trauma/epidemiology , Female , Gulf War , Humans , Kuwait/epidemiology , Male , Population Surveillance/methods , Risk Factors , Surveys and Questionnaires , Young Adult
16.
Chembiochem ; 9(6): 964-73, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18350527

ABSTRACT

A series of engineered linear analogues [coded as F6, W6, Y6, A6, S6 and C(Acm)6] were modeled, designed, synthesized and structurally characterized by mass spectra, circular dichroism, hydrophobicity analysis and molecular modeling. We have screened antimicrobial activity, hemolysis to rabbit erythrocytes, and cytotoxicity to human conjunctival epithelial cells. No significant hemolytic effect was observed for hBD3 or from five of the six analogues [F6, Y6, A6, S6 and C(Acm)6] over the range of 3-100 microg mL(-1). The six linear analogues have reduced cytotoxicity to human conjunctival epithelial cells over the range of 6-100 microg mL(-1) compared to hBD3. By tuning the overall hydrophobicity of linear hBD3 analogues, reduced cytotoxicity and hemolysis were obtained while preserving the antimicrobial properties. The decreased cytotoxicity of the linear analogues is suggested to be structurally related to the removal of disulfide bridges, and the flexible structure of the linear forms, which seem to be associated with loss of secondary structure. These results suggest a new approach for guiding the design of new linear analogues of defensin peptides with strong antibiotic properties and reduced cytotoxicity to mammalian cells.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Drug Design , beta-Defensins/chemistry , beta-Defensins/pharmacology , Amino Acid Sequence , Animals , Anti-Infective Agents/toxicity , Chromatography, High Pressure Liquid , Circular Dichroism , Conjunctiva/cytology , Cysteine/chemistry , Epithelial Cells/drug effects , Erythrocytes/cytology , Erythrocytes/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hemolysis/drug effects , Humans , Inhibitory Concentration 50 , Mass Spectrometry , Molecular Sequence Data , Rabbits , beta-Defensins/toxicity
17.
Nucleic Acids Res ; 35(Database issue): D265-8, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17090586

ABSTRACT

The defensins knowledgebase is a manually curated database and information source focused on the defensin family of antimicrobial peptides. The current version of the database holds a comprehensive collection of over 350 defensin records each containing sequence, structure and activity information. A web-based interface provides access to the information and allows for text-based searching on the data fields. In addition, the website presents information on patents, grants, research laboratories and scientists, clinical studies and commercial entities pertaining to defensins. With the rapidly increasing interest in defensins, we hope that the knowledgebase will prove to be a valuable resource in the field of antimicrobial peptide research. The defensins knowledgebase is available at http://defensins.bii.a-star.edu.sg/.


Subject(s)
Anti-Bacterial Agents/chemistry , Databases, Protein , Defensins/chemistry , Anti-Bacterial Agents/pharmacology , Defensins/pharmacology , Internet , User-Computer Interface
18.
BMC Bioinformatics ; 7 Suppl 5: S17, 2006 Dec 18.
Article in English | MEDLINE | ID: mdl-17254301

ABSTRACT

BACKGROUND: Defensins are antimicrobial peptides of innate immunity functioning by non-specific binding to anionic phospholipids in bacterial membranes. Their cationicity, amphipathicity and ability to oligomerize are considered key factors for their action. Based on structural information on human beta-defensin 2, we examine homologous defensins from various mammalian species for conserved functional physico-chemical characteristics. RESULTS: Based on homology greater than 40%, structural models of 8 homologs of HBD-2 were constructed. A conserved pattern of electrostatics and dynamics was observed across 6 of the examined defensins; models backed by energetics suggest that the defensins in these 6 organisms are characterized by dimerization-linked enhanced functional potentials. In contrast, dimerization is not energetically favoured in the sheep, goat and mouse defensins, suggesting that they function efficiently as monomers. CONCLUSION: Beta-defensin 2 from some mammals may work as monomers while those in others, including humans, work as oligomers. This could potentially be used to design human defensins that may be effective at lower concentrations and hence have therapeutic benefits.


Subject(s)
Defensins/chemistry , Models, Molecular , Protein Structure, Quaternary , Animals , Cations , Cell Membrane/metabolism , Computer Simulation , Defensins/metabolism , Dimerization , Humans , Mammals , Mutagenesis, Site-Directed , Sequence Alignment , beta-Defensins/chemistry , beta-Defensins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...