Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
J Neurochem ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279529

ABSTRACT

Post-stroke neuroinflammation is pivotal in brain repair, yet persistent inflammation can aggravate ischemic brain damage and hamper recovery. Following stroke, specific molecules released from brain cells attract and activate central and peripheral immune cells. These immune cells subsequently release diverse inflammatory molecules within the ischemic brain, initiating a sequence of events, including activation of transcription factors in different brain cell types that modulate gene expression and influence outcomes; the interactive action of various noncoding RNAs (ncRNAs) to regulate multiple biological processes including inflammation, epitranscriptomic RNA modification that controls RNA processing, stability, and translation; and epigenetic changes including DNA methylation, hydroxymethylation, and histone modifications crucial in managing the genic response to stroke. Interactions among these events further affect post-stroke inflammation and shape the depth of ischemic brain damage and functional outcomes. We highlighted these aspects of neuroinflammation in this review and postulate that deciphering these mechanisms is pivotal for identifying therapeutic targets to alleviate post-stroke dysfunction and enhance recovery.

2.
J Cereb Blood Flow Metab ; 44(2): 239-251, 2024 02.
Article in English | MEDLINE | ID: mdl-37933735

ABSTRACT

We previously showed that knockdown or deletion of Fos downstream transcript (FosDT; a stroke-induced brain-specific long noncoding RNA) is neuroprotective. We presently tested the therapeutic potential of FosDT siRNA in rodents subjected to transient middle cerebral artery occlusion (MCAO) using the Stroke Treatment Academic Industry Roundtable criteria, including sex, age, species, and comorbidity. FosDT siRNA (IV) given at 30 min of reperfusion significantly improved motor function recovery (rotarod test, beam walk test, and adhesive removal test) and reduced infarct size in adult and aged spontaneously hypertensive rats of both sexes. FosDT siRNA administered in a delayed fashion (3.5 h of reperfusion following 1 h transient MCAO) also significantly improved motor function recovery and decreased infarct volume. Furthermore, FosDT siRNA enhanced post-stroke functional recovery in normal and diabetic mice. Mechanistically, FosDT triggered post-ischemic neuronal damage via the transcription factor REST as REST siRNA mitigated the enhanced functional outcome in FosDT-/- rats. Additionally, NF-κB regulated FosDT expression as NF-κB inhibitor BAY 11-7082 significantly decreased post-ischemic FosDT induction. Thus, FosDT is a promising target with a favorable therapeutic window to mitigate secondary brain damage and facilitate recovery after stroke regardless of sex, age, species, and comorbidity.


Subject(s)
Brain Ischemia , Diabetes Mellitus, Experimental , Neuroprotective Agents , RNA, Long Noncoding , Stroke , Male , Female , Rats , Mice , Animals , RNA, Long Noncoding/genetics , NF-kappa B/metabolism , Stroke/complications , Infarction, Middle Cerebral Artery/complications , Rats, Inbred SHR , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Brain/metabolism , Neuroprotective Agents/pharmacology
3.
Transl Stroke Res ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38129636

ABSTRACT

The microRNA-21 (miR-21) levels in the brain are crucial in determining post-stroke brain damage and recovery. The miR-21 exerts neuroprotection by targeting mRNAs that translate proteins that mediate brain damage. We currently determined the efficacy and efficiency of intravenously administered miR-21 mimic after focal cerebral ischemia in mice. Adult male mice were intravenously administered with either control mimic or miR-21 mimic at 5 min/2 h after reperfusion following 1 h transient middle cerebral artery occlusion to determine the therapeutic window of miR-21 mimic. Adult female, type-2 diabetic male, aged male, and aged female mice were administered with control/miR-21 mimic at 5 min after reperfusion following 35 min/1 h transient middle cerebral artery occlusion. Early administration of miR-21 mimic significantly reduced brain damage and promoted long-term recovery after stroke. Further, miR-21 mimic is more effective in males than in females subjected to stroke. However, delayed treatment with miR-21 mimic is not efficacious, and type-2 diabetic subjects show no improvement with miR-21 mimic treatment.

4.
Front Genet ; 14: 1282673, 2023.
Article in English | MEDLINE | ID: mdl-38028598

ABSTRACT

Among the diseases threatening maize production in Africa are gray leaf spot (GLS) caused by Cercospora zeina and northern corn leaf blight (NCLB) caused by Exserohilum turcicum. The two pathogens, which have high genetic diversity, reduce the photosynthesizing ability of susceptible genotypes and, hence, reduce the grain yield. To identify population-based quantitative trait loci (QTLs) for GLS and NCLB resistance, a biparental population of 230 lines derived from the tropical maize parents CML511 and CML546 and an association mapping panel of 239 tropical and sub-tropical inbred lines were phenotyped across multi-environments in western Kenya. Based on 1,264 high-quality polymorphic single-nucleotide polymorphisms (SNPs) in the biparental population, we identified 10 and 18 QTLs, which explained 64.2% and 64.9% of the total phenotypic variance for GLS and NCLB resistance, respectively. A major QTL for GLS, qGLS1_186 accounted for 15.2% of the phenotypic variance, while qNCLB3_50 explained the most phenotypic variance at 8.8% for NCLB resistance. Association mapping with 230,743 markers revealed 11 and 16 SNPs significantly associated with GLS and NCLB resistance, respectively. Several of the SNPs detected in the association panel were co-localized with QTLs identified in the biparental population, suggesting some consistent genomic regions across genetic backgrounds. These would be more relevant to use in field breeding to improve resistance to both diseases. Genomic prediction models trained on the biparental population data yielded average prediction accuracies of 0.66-0.75 for the disease traits when validated in the same population. Applying these prediction models to the association panel produced accuracies of 0.49 and 0.75 for GLS and NCLB, respectively. This research conducted in maize fields relevant to farmers in western Kenya has combined linkage and association mapping to identify new QTLs and confirm previous QTLs for GLS and NCLB resistance. Overall, our findings imply that genetic gain can be improved in maize breeding for resistance to multiple diseases including GLS and NCLB by using genomic selection.

5.
Transpl Immunol ; 81: 101931, 2023 12.
Article in English | MEDLINE | ID: mdl-37730185

ABSTRACT

"In solid organ transplantation, the compatibility between recipient and donor relies on testing prior to transplantation as a major determinant for the successful transplant outcomes. This compatibility testing depends on the detection of donor-specific antibodies (DSAs) present in the recipient. Indeed, sensitized transplant candidates are at higher risk of allograft rejection and graft loss compared to non-sensitized individuals. Most of the laboratories in India have adopted test algorithms for the appropriate risk stratification of transplants, namely: 1) donor cell-based flow-cytometric cross-match (FCXM) assay with patient's serum to detect DSAs; 2) HLA-coated beads to detect anti-HLA antibodies; and 3) complement-dependent cytotoxicity crossmatch (CDCXM) with donor cells to detect cytotoxic antibodies. In the risk stratification strategy, laboratories generally accept a DSA median fluorescence index (MFI) of 1000 MFI or lower MFI (low-MFI) as a negative value and clear the patient for the transplant. We present two cases of live-related donor kidney transplants (LDKTs) with low-MFI pre-transplant DSA values who experienced an early acute antibody-mediated rejection (ABMR) as a result of an anamnestic antibody response by DSA against HLA class II antibodies. These results were confirmed by retesting of both pre-transplant and post-transplant archived sera from patients and freshly obtained donor cells. Our examples indicate a possible ABMR in patients with low MFI pre-transplant DSA. Reclassification of low vs. high-risk may be appropriate for sensitized patients with low-MFI DSA."


Subject(s)
Kidney Transplantation , Humans , HLA Antigens , Antibodies , Tissue Donors , Histocompatibility Testing/methods , Kidney , Graft Rejection , Isoantibodies , Retrospective Studies
6.
PLoS One ; 18(2): e0281484, 2023.
Article in English | MEDLINE | ID: mdl-36745639

ABSTRACT

Maize lethal necrosis is a destructive virus disease of maize caused by maize chlorotic mottle virus (MCMV) in combination with a virus in the family Potyviridae. Emergence of MLN is typically associated with the introduction of MCMV or its vectors and understanding its spread through seed is critical for disease management. Previous studies suggest that although MCMV is detected on seed, the seed transmission rate of this virus is low. However, mechanisms influencing its transmission are poorly understood. Elucidating these mechanisms is crucial for informing strategies to prevent spread on contaminated seed. In this study, we evaluated the rate of MCMV seed transmission using seed collected from plants that were artificially inoculated with MCMV isolates from Hawaii and Kenya. Grow-out tests indicated that MCMV transmission through seed was rare, with a rate of 0.004% among the more than 85,000 seed evaluated, despite detection of MCMV at high levels in the seed lots. To understand factors that limit transmission from seed, MCMV distribution in seed tissues was examined using serology and immunolocalization. The virus was present at high levels in maternal tissues, the pericarp and pedicel, but absent from filial endosperm and embryo seed tissues. The ability to transmit MCMV from seed to uninfected plants was tested to evaluate virus viability. Transmission was negatively associated with both seed maturity and moisture content. Transmission of MCMV from infested seed dried to less than 15% moisture was not detected, suggesting proper handling could be important for minimizing spread of MCMV through seed.


Subject(s)
Plant Diseases , Potyviridae , Tombusviridae , Zea mays , Kenya , Plant Diseases/virology , Zea mays/virology , Hawaii , Seeds/virology
7.
Mol Ther Nucleic Acids ; 31: 57-67, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36618263

ABSTRACT

Transient focal ischemia decreased microRNA-7 (miR-7) levels, leading to derepression of its major target α-synuclein (α-Syn) that promotes secondary brain damage. Circular RNA CDR1as is known to regulate miR-7 abundance and function. Hence, we currently evaluated its functional significance after focal ischemia. Transient middle cerebral artery occlusion (MCAO) in adult mice significantly downregulated both CDR1as and miR-7 levels in the peri-infarct cortex between 3 and 72 h of reperfusion. Interestingly, neither pri-miR-7a nor 7b was altered in the ischemic brain. Intracerebral injection of an AAV9 vector containing a CDR1as gene significantly increased CDR1as levels by 21 days that persisted up to 4 months without inducing any observable toxicity in both sham and MCAO groups. Following transient MCAO, there was a significant increase in miR-7 levels and CDR1as binding to Ago2/miR-7 in the peri-infarct cortex of AAV9-CDR1as cohort compared with AAV9-Control cohort at 1 day of reperfusion. CDR1as overexpression significantly suppressed post-stroke α-Syn protein induction, promoted motor function recovery, decreased infarct size, and curtailed the markers of apoptosis, autophagy mitochondrial fragmentation, and inflammation in the post-stroke brain compared with AAV9-Control-treated cohort. Overall, our findings imply that CDR1as reconstitution is neuroprotective after stroke, probably by protecting miR-7 and preventing α-Syn-mediated neuronal death.

8.
Neuromolecular Med ; 25(1): 94-101, 2023 03.
Article in English | MEDLINE | ID: mdl-36447045

ABSTRACT

Post-stroke secondary brain damage is significantly influenced by the induction and accumulation of α-Synuclein (α-Syn). α-Syn-positive inclusions are often present in tauopathies and elevated tau levels and phosphorylation promotes neurodegeneration. Glycogen synthase kinase 3ß (GSK-3ß) is a known promoter of tau phosphorylation. We currently evaluated the interaction of α-Syn with GSK-3ß and tau in post-ischemic mouse brain. Transient focal ischemia led to increased cerebral protein-protein interaction of α-Syn with both GSK-3ß and tau and elevated tau phosphorylation. Treatment with a GSK-3ß inhibitor prevented post-ischemic tau phosphorylation. Furthermore, α-Syn interaction was observed to be crucial for post-ischemic GSK-3ß-dependent tau hyperphosphorylation as it was not seen in α-Syn knockout mice. Moreover, tau knockout mice show significantly smaller brain damage after transient focal ischemia. Overall, the present study indicates that GSK-3ß catalyzes the α-Syn-dependent tau phosphorylation and preventing this interaction is crucial to limit post-ischemic secondary brain damage.


Subject(s)
Brain Injuries , Stroke , Mice , Animals , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , tau Proteins/metabolism , Glycogen Synthase Kinase 3 beta , Stroke/complications , Brain/metabolism , Mice, Knockout , Phosphorylation
9.
Stroke ; 54(1): 245-254, 2023 01.
Article in English | MEDLINE | ID: mdl-36321453

ABSTRACT

BACKGROUND: FTO (fat mass and obesity-associated protein) demethylates N6-methyladenosine (m6A), which is a critical epitranscriptomic regulator of neuronal function. We previously reported that ischemic stroke induces m6A hypermethylation with a simultaneous decrease in FTO expression in neurons. Currently, we evaluated the functional significance of restoring FTO with an adeno-associated virus 9, and thus reducing m6A methylation in poststroke brain damage. METHODS: Adult male and female C57BL/6J mice were injected with FTO adeno-associated virus 9 (intracerebral) at 21 days prior to inducing transient middle cerebral artery occlusion. Poststroke brain damage (infarction, atrophy, and white matter integrity) and neurobehavioral deficits (motor function, cognition, depression, and anxiety-like behaviors) were evaluated between days 1 and 28 of reperfusion. RESULTS: FTO overexpression significantly decreased the poststroke m6A hypermethylation. More importantly, exogenous FTO substantially decreased poststroke gray and white matter damage and improved motor function recovery, cognition, and depression-like behavior in both sexes. CONCLUSIONS: These results demonstrate that FTO-dependent m6A demethylation minimizes long-term sequelae of stroke independent of sex.


Subject(s)
Stroke , Animals , Mice , Male , Female , Mice, Inbred C57BL , Stroke/genetics , DNA Methylation , Obesity , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
10.
Transl Stroke Res ; 14(6): 806-810, 2023 12.
Article in English | MEDLINE | ID: mdl-35737185

ABSTRACT

Methylation of adenosine at N1 position yields N1-methyladenosine (m1A), which is an epitranscriptomic modification that regulates mRNA metabolism. Recent studies showed that altered m1A methylation promotes acute and chronic neurological diseases. We currently evaluated the effect of focal ischemia on cerebral m1A methylome and its machinery. Adult male C57BL/6J mice were subjected to transient middle cerebral artery occlusion, and the peri-infarct cortex was analyzed at 12 h and 24 h of reperfusion. The bulk abundance of m1A was measured by mass spectrometry and dot blot, and transcriptome-wide m1A alterations were profiled using antibody-independent m1A-quant-seq. Expression of the m1A writers and erasers was estimated by real-time PCR. Ischemia significantly decreased m1A levels and concomitantly upregulated m1A demethylase alkB homolog 3 at 24 h of reperfusion compared to sham. Transcriptome-wide profiling showed differential m1A methylation at 14 sites (8 were hypo- and 6 were hypermethylated). Many of those are located in the 3'-UTRs of unannotated transcripts proximal to the genes involved in regulating protein complex assembly, circadian rhythms, chromatin remodeling, and chromosome organization. Using several different approaches, we show for the first time that m1A epitranscriptomic modification in RNA is highly sensitive to cerebral ischemia.


Subject(s)
Ischemic Stroke , Mice , Animals , Male , Mice, Inbred C57BL , Methylation , Transcriptome , Ischemia
11.
Transl Stroke Res ; 14(1): 111-115, 2023 02.
Article in English | MEDLINE | ID: mdl-35088373

ABSTRACT

Transient focal ischemia induces a sustained downregulation of miR-7 leading to derepression of its target α-synuclein (α-Syn), which promotes neuronal death. We previously showed that treatment with miR-7 mimic prevents α-Syn induction and protects brain after stroke in rodents irrespective of age and sex. To further decipher the role of miR-7, we currently studied infarction and motor function in miR-7 double knockout mice (lack both miR-7a and miR-7b) subjected to focal ischemia. Adult miR-7-/- mice showed similar motor and cognitive functions to miR-7+/+ mice. However, when subjected to even a mild focal ischemia, the miR-7-/- mice showed exacerbated brain damage and worsened motor function compared with the miR-7+/+ mice. Replenishing miR-7 in miR-7-/- mice (IV injection of miR-7 mimic) restored miR-7 mediated neuroprotection and motor recovery, potentially by preventing α-Syn protein induction. Thus, we show that miR-7 is an essential miRNA in the brain that prevents α-Syn translation and the ensuing brain damage after stroke.


Subject(s)
Brain Ischemia , MicroRNAs , Stroke , Mice , Animals , Stroke/genetics , Stroke/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Brain Ischemia/metabolism , Brain/metabolism , Mice, Knockout , Mice, Inbred C57BL
12.
Viruses ; 14(12)2022 12 12.
Article in English | MEDLINE | ID: mdl-36560769

ABSTRACT

Maize Lethal Necrosis (MLN) disease, caused by a synergistic co-infection of maize chlorotic mottle virus (MCMV) and any member of the Potyviridae family, was first reported in EasternAfrica (EA) a decade ago. It is one of the most devastating threats to maize production in these regions since it can lead up to 100% crop loss. Conventional counter-measures have yielded some success; however, they are becoming less effective in controlling MLN. In EA, the focus has been on the screening and identification of resistant germplasm, dissecting genetic and the molecular basis of the disease resistance, as well as employing modern breeding technologies to develop novel varieties with improved resistance. CIMMYT and scientists from NARS partner organizations have made tremendous progresses in the screening and identification of the MLN-resistant germplasm. Quantitative trait loci mapping and genome-wide association studies using diverse, yet large, populations and lines were conducted. These remarkable efforts have yielded notable outcomes, such as the successful identification of elite resistant donor lines KS23-5 and KS23-6 and their use in breeding, as well as the identification of multiple MLN-tolerance promising loci clustering on Chr 3 and Chr 6. Furthermore, with marker-assisted selection and genomic selection, the above-identified germplasms and loci have been incorporated into elite maize lines in a maize breeding program, thus generating novel varieties with improved MLN resistance levels. However, the underlying molecular mechanisms for MLN resistance require further elucidation. Due to third generation sequencing technologies as well functional genomics tools such as genome-editing and DH technology, it is expected that the breeding time for MLN resistance in farmer-preferred maize varieties in EA will be efficient and shortened.


Subject(s)
Genome-Wide Association Study , Potyviridae , Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Potyviridae/genetics , Zea mays/genetics , Phenotype
13.
J Med Ultrasound ; 30(3): 189-195, 2022.
Article in English | MEDLINE | ID: mdl-36484046

ABSTRACT

Background: Traditional diagnostic techniques such as clinical examination and electrodiagnosis are less sensitive in diagnosing ulnar neuropathy at the elbow (UNE). Ultrasonography (USG) is increasingly being used to diagnose UNE. However, clinical applicability is limited by the lack of uniformity in the previous studies. Therefore, we aimed to study in the Indian patients the diagnostic utility of the ulnar nerve cross-sectional area (CSA) and a novel parameter-entrapment index (EI) in UNE measured by USG and to find if both these parameters correlate with the electrodiagnostic severity. Methods: This retrospective casecontrol study included 28 patients (36 nerves) of UNE and 12 (24 nerves) age- and gender-matched healthy controls. Electrodiagnostic severity was graded using the Padua classification. USG was performed in both groups, and CSA was measured at the medial epicondyle (ME) and 5 cm proximally and distally. EI was calculated by multiplying the ratio of CSA above ME over CSA at ME by 100. Best cutoffs were derived by the receiver operating characteristic curve analysis. Results: UNE group had significantly higher CSA at all three locations and lower EI than the control group. CSA at ME ≥9.7 mm2 and EI ≤61.5 has sensitivity and specificity of 88.9%/87.5% and 72.2%/79.2%, respectively. There was no significant difference in CSA and EI between nonsevere and severe UNE groups. Conclusion: CSA at ME and EI have good sensitivity and specificity in diagnosing UNE. However, they cannot differentiate nonsevere from severe UNE.

14.
Neurochem Int ; 161: 105432, 2022 12.
Article in English | MEDLINE | ID: mdl-36252818

ABSTRACT

We previously reported that increased expression of matrix metalloproteinase-12 (MMP-12) mediates blood-brain barrier disruption via tight junction protein degradation after focal cerebral ischemia in rats. Currently, we evaluated whether MMP-12 knockdown protects the post-stroke mouse brain and promotes better functional recovery. Adult male mice were injected with negative siRNA or MMP-12 siRNA (intravenous) at 5 min of reperfusion following 1 h transient middle cerebral artery occlusion. MMP-12 knockdown significantly reduced the post-ischemic infarct volume and improved motor and cognitive functional recovery. Mechanistically, MMP-12 knockdown ameliorated degradation of tight junction proteins zonula occludens-1, claudin-5, and occludin after focal ischemia. MMP-12 knockdown also decreased the expression of inflammatory mediators, including monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-6, and the expression of apoptosis marker cleaved caspase-3 after ischemia. Overall, the present study indicates that MMP-12 promotes secondary brain damage after stroke and hence is a promising stroke therapeutic target.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Stroke , Animals , Male , Mice , Blood-Brain Barrier/metabolism , Brain Injuries/metabolism , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/metabolism , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/metabolism , Occludin/metabolism , RNA, Small Interfering , Stroke/metabolism
15.
Nat Commun ; 13(1): 3559, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729171

ABSTRACT

Robotics and autonomous systems are reshaping the world, changing healthcare, food production and biodiversity management. While they will play a fundamental role in delivering the UN Sustainable Development Goals, associated opportunities and threats are yet to be considered systematically. We report on a horizon scan evaluating robotics and autonomous systems impact on all Sustainable Development Goals, involving 102 experts from around the world. Robotics and autonomous systems are likely to transform how the Sustainable Development Goals are achieved, through replacing and supporting human activities, fostering innovation, enhancing remote access and improving monitoring. Emerging threats relate to reinforcing inequalities, exacerbating environmental change, diverting resources from tried-and-tested solutions and reducing freedom and privacy through inadequate governance. Although predicting future impacts of robotics and autonomous systems on the Sustainable Development Goals is difficult, thoroughly examining technological developments early is essential to prevent unintended detrimental consequences. Additionally, robotics and autonomous systems should be considered explicitly when developing future iterations of the Sustainable Development Goals to avoid reversing progress or exacerbating inequalities.


Subject(s)
Robotics , Sustainable Development , Biodiversity , Conservation of Natural Resources , Goals , Humans
16.
Genes (Basel) ; 13(2)2022 02 15.
Article in English | MEDLINE | ID: mdl-35205395

ABSTRACT

Breeding maize lines with the improved level of desired agronomic traits under optimum and drought conditions as well as increased levels of resistance to several diseases such as maize lethal necrosis (MLN) is one of the most sustainable approaches for the sub-Saharan African region. In this study, 879 doubled haploid (DH) lines derived from 26 biparental populations were evaluated under artificial inoculation of MLN, as well as under well-watered (WW) and water-stressed (WS) conditions for grain yield and other agronomic traits. All DH lines were used for analyses of genotypic variability, association studies, and genomic predictions for the grain yield and other yield-related traits. Genome-wide association study (GWAS) using a mixed linear FarmCPU model identified SNPs associated with the studied traits i.e., about seven and eight SNPs for the grain yield; 16 and 12 for anthesis date; seven and eight for anthesis silking interval; 14 and 5 for both ear and plant height; and 15 and 5 for moisture under both WW and WS environments, respectively. Similarly, about 13 and 11 SNPs associated with gray leaf spot and turcicum leaf blight were identified. Eleven SNPs associated with senescence under WS management that had depicted drought-stress-tolerant QTLs were identified. Under MLN artificial inoculation, a total of 12 and 10 SNPs associated with MLN disease severity and AUDPC traits, respectively, were identified. Genomic prediction under WW, WS, and MLN disease artificial inoculation revealed moderate-to-high prediction accuracy. The findings of this study provide useful information on understanding the genetic basis for the MLN resistance, grain yield, and other agronomic traits under MLN artificial inoculation, WW, and WS conditions. Therefore, the obtained information can be used for further validation and developing functional molecular markers for marker-assisted selection and for implementing genomic prediction to develop superior elite lines.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Disease Resistance/genetics , Edible Grain/genetics , Haploidy , Phenotype , Plant Breeding , Zea mays/genetics
17.
Transl Stroke Res ; 13(1): 1-11, 2022 02.
Article in English | MEDLINE | ID: mdl-34224107

ABSTRACT

RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.


Subject(s)
Epigenesis, Genetic , RNA , Epigenesis, Genetic/genetics , Gene Expression Regulation , Neuronal Plasticity/physiology , RNA/genetics , RNA/metabolism , Transcriptome/genetics
18.
J Cereb Blood Flow Metab ; 42(2): 253-263, 2022 02.
Article in English | MEDLINE | ID: mdl-34689646

ABSTRACT

The role of tenascin-C (TNC) in ischemic stroke pathology is not known despite its prognostic association with cerebrovascular diseases. Here, we investigated the effect of TNC knockdown on post-stroke brain damage and its putative mechanism of action in adult mice of both sexes. Male and female C57BL/6 mice were subjected to transient middle cerebral artery occlusion and injected (i.v.) with either TNC siRNA or a negative (non-targeting) siRNA at 5 min after reperfusion. Motor function (beam walk and rotarod tests) was assessed between days 1 and 14 of reperfusion. Infarct volume (T2-MRI), BBB damage (T1-MRI with contrast), and inflammatory markers were measured at 3 days of reperfusion. The TNC siRNA treated cohort showed significantly curtailed post-stroke TNC protein expression, motor dysfunction, infarction, BBB damage, and inflammation compared to the sex-matched negative siRNA treated cohort. These results demonstrate that the induction of TNC during the acute period after stroke might be a mediator of post-ischemic inflammation and secondary brain damage independent of sex.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Injuries/metabolism , Ischemic Stroke/metabolism , Tenascin/metabolism , Animals , Blood-Brain Barrier/pathology , Brain Injuries/pathology , Female , Ischemic Stroke/pathology , Male , Mice
19.
Curr Med Imaging ; 18(12): 1282-1290, 2022.
Article in English | MEDLINE | ID: mdl-34825875

ABSTRACT

BACKGROUND: As the mortality rate of lung cancer is enormously high, its impact is also extremely higher than the other types of cancer. Lung malignancy is thus considered one of the deadliest diseases with a high death rate in the world. It is reported that nearly 1.2 million people are diagnosed with this disease and about 1.1 million individuals are died due to this type of cancer every year. The early detection of this disease is the only solution for minimizing the death rate or maximizing the survival rate. However, the timely identification of lung malignant growth is a complex process and hence various imaging algorithms are employed in the process of detecting lung cancer on time. AIM: The Computer-Aided Diagnosis (CAD) is highly beneficial for the radiologist to rapidly detect and diagnose the irregularities in advance. The CAD systems usually focus on identifying and detecting the lung nodules. As the treatment of this disease is provided on the basis of its stages, the early detection of cancer has to be given much importance. The major drawbacks of existing CAD systems are less accuracy in segmenting the nodule and staging the lung cancer. OBJECTIVE: The major aim of this work is to categorize the lung nodules from the CT image and classify the tumorous cells for identifying the exact position of cancer with higher sensitivity, precision, and accuracy than other strategies. METHODS: The methods employed in this study are listed as follows: (i) For the process of de-noising and edge sharpening of lung image, the curvelet transform was used. (ii) The Fuzzy thresholding technique was used to perform lung image binarization and lung boundary corrections. (iii) Segmentation was performed by implementing the K-means algorithm. (iv) By using Convolutional Neural Network (CNN), different stages of lung nodules, like benign and malignant, were identified. RESULTS: The proposed classifier achieves optimal accuracy of 97.3%, a sensitivity of 98.6% and a specificity of 96.1% which are significantly better than the other approaches. Thus, the proposed approach is highly helpful in detecting lung cancer in its early stages. CONCLUSION: The results validate that the proposed algorithms are highly capable of classifying the lung images into various stages, which effectively helps the radiologist in the decision-making process.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Computers , Diagnosis, Computer-Assisted/methods , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Tomography, X-Ray Computed/methods
20.
Exp Ther Med ; 22(5): 1295, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34630650

ABSTRACT

Glutamate-induced excitotoxicity is a well-recognized cause of neuronal cell death. Nutritional supplementation with Coenzyme Q10 (CoQ10) has been previously demonstrated to serve neuro-protective effects against glutamate-induced excitotoxicity. The aim of the present study was to determine whether the protective effect of CoQ10 against glutamate toxicity could be attributed to stimulating mitochondrial biogenesis. Mouse hippocampal neuronal HT22 cells were incubated with glutamate with or without ubisol Q10. The results revealed that glutamate significantly decreased levels of mitochondrial biogenesis related proteins, including peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and nuclear respiratory factor (NRF)2. Additionally, glutamate reduced mitochondrial biogenesis, as determined using a mitochondrial biogenesis kit. Pretreatment with CoQ10 prevented decreases in phosphorylated (p)-Akt, p-cAMP response element-binding protein, PGC-1α, NRF2 and mitochondrial transcription factor A, increasing mitochondrial biogenesis. Taken together, the results described a novel mechanism of CoQ10-induced neuroprotection and indicated a central role for mitochondrial biogenesis in protecting against glutamate-induced excitotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...