Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Stroke Cerebrovasc Dis ; 30(8): 105905, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34107418

ABSTRACT

PURPOSE: In the past years the significance of white matter hyperintensities (WMH) has gained raising attention because it is considered a marker of severity of different pathologies. Another condition that in the last years has been assessed in the neuroradiology field is cerebral microbleeds (CMB). The purpose of this work was to evaluate the association between the volume of WMH and the presence and characteristics of CMB. MATERIAL AND METHODS: Sixty-five consecutive (males 45; median age 70) subjects were retrospectively analyzed with a 1.5 Tesla scanner. WMH volume was quantified with a semi-automated procedure considering the FLAIR MR sequences whereas the CMB were studied with the SWI technique and CMBs were classified as absent (grade 1), mild (grade 2; total number of CMBs: 1-2), moderate (grade 3; total number of CMBs: 3-10), and severe (grade 4; total number of CMBs: >10). Moreover, overall number of CMBs and the maximum diameter were registered. RESULTS: Prevalence of CMBs was 30.76% whereas WMH 81.5%. Mann-Whitney test showed a statistically significant difference in WMH volume between subjects with and without CMBs (p < 0.001). Pearson analysis showed significant correlation between CMB grade, number and maximum diameter and WMH. The better ROC area under the curve (Az) was obtained by the hemisphere volume with a 0.828 (95% CI from 0.752 to 0,888; SD = 0.0427; p value = 0.001). The only parameters that showed a statistically significant association in the logistic regression analysis were Hemisphere volume of WMH (p = 0.001) and Cholesterol LDL (p = 0.0292). CONCLUSION: In conclusion, the results of this study suggest the presence of a significant correlation between CMBs and volume of WMH. No differences were found between the different vascular territories.


Subject(s)
Cerebral Hemorrhage/diagnostic imaging , Leukoencephalopathies/diagnostic imaging , Magnetic Resonance Imaging , White Matter/diagnostic imaging , Aged , Aged, 80 and over , Cerebral Hemorrhage/epidemiology , Female , Humans , Hypertension/epidemiology , Leukoencephalopathies/epidemiology , Male , Middle Aged , Predictive Value of Tests , Prevalence , Retrospective Studies , Risk Assessment , Risk Factors
2.
Comput Biol Med ; 123: 103847, 2020 08.
Article in English | MEDLINE | ID: mdl-32768040

ABSTRACT

MOTIVATION: The early screening of cardiovascular diseases (CVD) can lead to effective treatment. Thus, accurate and reliable atherosclerotic carotid wall detection and plaque measurements are crucial. Current measurement methods are time-consuming and do not utilize the power of knowledge-based paradigms such as artificial intelligence (AI). We present an AI-based methodology for the joint automated detection and measurement of wall thickness and carotid plaque (CP) in the form of carotid intima-media thickness (cIMT) and total plaque area (TPA), a class of AtheroEdge™ system (AtheroPoint™, CA, USA). METHOD: The novel system consists of two stages, and each stage comprises an independent deep learning (DL) model. In Stage I, the first DL model segregates the common carotid artery (CCA) patches from ultrasound (US) images into the rectangular wall and non-wall patches. The characterized wall patches are integrated to form the region of interest (ROI), which is then fed into Stage II. In Stage II, the second DL model segments the far wall region. Lumen-intima (LI) and media-adventitial (MA) boundaries are then extracted from the wall region, which is then used for cIMT and PA measurement. RESULTS: Using the database of 250 carotid scans, the cIMT error using the AI model is 0.0935±0.0637 mm, which is lower than those of all previous methods. The PA error is found to be 2.7939±2.3702 mm2. The system's correlation coefficient (CC) between AI and ground truth (GT) values for cIMT is 0.99 (p < 0.0001), which is higher compared with the CC of 0.96 (p < 0.0001) shown by the earlier DL method. The CC for PA between AI and GT values is 0.89 (p < 0.0001). CONCLUSION: A novel AI-based strategy was applied to carotid US images for the joint detection of carotid wall thickness (cWT) and plaque area (PA), followed by cIMT and PA measurement. This AI-based strategy shows improved performance using the patch technique compared with previous methods using full carotid scans.


Subject(s)
Carotid Artery Diseases , Plaque, Atherosclerotic , Stroke , Artificial Intelligence , Carotid Arteries/diagnostic imaging , Carotid Artery Diseases/diagnostic imaging , Carotid Intima-Media Thickness , Humans , Plaque, Atherosclerotic/diagnostic imaging , Risk Assessment , Stroke/diagnostic imaging
3.
Rev Cardiovasc Med ; 21(4): 541-560, 2020 12 30.
Article in English | MEDLINE | ID: mdl-33387999

ABSTRACT

Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors.


Subject(s)
Artificial Intelligence , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Delivery of Health Care/methods , Pandemics , Risk Assessment , SARS-CoV-2 , Cardiovascular Diseases/therapy , Comorbidity , Humans , Risk Factors
4.
Neuroradiology ; 62(3): 377-387, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31796984

ABSTRACT

PURPOSE: It is under debate how white matter hyperintensities (WMH) affects the brain connectivity. The objective of this research study is to validate the hypothesis, if and how the WMH influences brain connectivity in a population with carotid artery stenosis (CAS), which are eligible for carotid endarterectomy (CEA). We used resting state functional connectivity (rs-fc) magnetic resonance (MR) to validate our hypothesis, focusing on the effects of the total number of WMH (TNWMH) and of the WMH Burden (WMHB). METHODS: Twenty-three patients (sixteen males and seven females, mean age 74.34 years) with mono or bilateral carotid stenosis eligible for carotid endarterectomy (CEA), underwent an MR examination on a 1.5-T scanner. The protocol included a morphologic T1-3D isotropic, an EPI functional sequence for rs-fc MR analysis, and a 3D isotropic FLAIR sequence. For each patient, the TNWMH and the WMHB were obtained using two online tools-volBrain and lesionBrain. The rs-fc region-of-interest to region-of-interest (ROI-to-ROI) analysis was performed with the CONN toolbox v18a: two different multiple regression analyses including both WMHB and TNWMH as second-level covariates evaluated the individual effects of WMHB (Analysis A) and TNWMH (Analysis B), adopting a p value corrected for false discovery rate (p-FDR) < 0.05 to identify statistically significant values. RESULTS: Both analyses A and B identified several statistically significant positive and negative correlations associated with WMHB and TNWMH. CONCLUSION: WMH influence functional connectivity in patients with carotid artery stenosis eligible for CEA; further, WMHB and TNWMH influence differently functional connectivity.


Subject(s)
Carotid Stenosis/complications , Connectome , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Aged , Female , Humans , Imaging, Three-Dimensional , Male
5.
Int Angiol ; 38(6): 451-465, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31782286

ABSTRACT

Carotid intima-media thickness (cIMT) and carotid plaque (CP) currently act as risk predictors for CVD/Stroke risk assessment. Over 2000 articles have been published that cover either use cIMT/CP or alterations of cIMT/CP and additional image-based phenotypes to associate cIMT related markers with CVD/Stroke risk. These articles have shown variable results, which likely reflect a lack of standardization in the tools for measurement, risk stratification, and risk assessment. Guidelines for cIMT/CP measurement are influenced by major factors like the atherosclerosis disease itself, conventional risk factors, 10-year measurement tools, types of CVD/Stroke risk calculators, incomplete validation of measurement tools, and the fast pace of computer technology advancements. This review discusses the following major points: 1) the American Society of Echocardiography and Mannheim guidelines for cIMT/CP measurements; 2) forces that influence the guidelines; and 3) calculators for risk stratification and assessment under the influence of advanced intelligence methods. The review also presents the knowledge-based learning strategies such as machine and deep learning which may play a future role in CVD/stroke risk assessment. We conclude that both machine learning and non-machine learning strategies will flourish for current and 10-year CVD/Stroke risk prediction as long as they integrate image-based phenotypes with conventional risk factors.


Subject(s)
Atherosclerosis/diagnosis , Carotid Arteries/diagnostic imaging , Carotid Intima-Media Thickness/standards , Plaque, Atherosclerotic/diagnostic imaging , Practice Guidelines as Topic , Cardiovascular Diseases/etiology , Humans , Risk Assessment , Risk Factors , Societies, Medical , Stroke/etiology , United States
6.
Cardiovasc Diagn Ther ; 9(5): 420-430, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31737514

ABSTRACT

BACKGROUND: Most cardiovascular (CV)/stroke risk calculators using the integration of carotid ultrasound image-based phenotypes (CUSIP) with conventional risk factors (CRF) have shown improved risk stratification compared with either method. However such approaches have not yet leveraged the potential of machine learning (ML). Most intelligent ML strategies use follow-ups for the endpoints but are costly and time-intensive. We introduce an integrated ML system using stenosis as an endpoint for training and determine whether such a system can lead to superior performance compared with the conventional ML system. METHODS: The ML-based algorithm consists of an offline and online system. The offline system extracts 47 features which comprised of 13 CRF and 34 CUSIP. Principal component analysis (PCA) was used to select the most significant features. These offline features were then trained using the event-equivalent gold standard (consisting of percentage stenosis) using a random forest (RF) classifier framework to generate training coefficients. The online system then transforms the PCA-based test features using offline trained coefficients to predict the risk labels on test subjects. The above ML system determines the area under the curve (AUC) using a 10-fold cross-validation paradigm. The above system so-called "AtheroRisk-Integrated" was compared against "AtheroRisk-Conventional", where only 13 CRF were considered in a feature set. RESULTS: Left and right common carotid arteries of 202 Japanese patients (Toho University, Japan) were retrospectively examined to obtain 395 ultrasound scans. AtheroRisk-Integrated system [AUC =0.80, P<0.0001, 95% confidence interval (CI): 0.77 to 0.84] showed an improvement of ~18% against AtheroRisk-Conventional ML (AUC =0.68, P<0.0001, 95% CI: 0.64 to 0.72). CONCLUSIONS: ML-based integrated model with the event-equivalent gold standard as percentage stenosis is powerful and offers low cost and high performance CV/stroke risk assessment.

7.
Cardiovasc Diagn Ther ; 9(5): 439-461, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31737516

ABSTRACT

BACKGROUND: Stroke is in the top three leading causes of death worldwide. Non-invasive monitoring of stroke can be accomplished via stenosis measurements. The current conventional image-based methods for these measurements are not accurate and reliable. They do not incorporate shape and intelligent learning component in their design. METHODS: In this study, we propose a deep learning (DL)-based methodology for accurate measurement of stenosis in common carotid artery (CCA) ultrasound (US) scans using a class of AtheroEdge system from AtheroPoint, USA. Three radiologists manually traced the lumen-intima (LI) for the near and the far walls, respectively, which served as a gold standard (GS) for training the DL-based model. Three DL-based systems were developed based on three types of GS. RESULTS: IRB approved (Toho University, Japan) 407 US scans from 204 patients were collected. The risk was characterized into three classes: low, moderate, and high-risk. The area-under-curve (AUC) corresponding to three DL systems using receiver operating characteristic (ROC) analysis computed were: 0.90, 0.94 and 0.86, respectively. CONCLUSIONS: Novel DL-based strategy showed reliable, accurate and stable stenosis severity index (SSI) measurements.

8.
Comput Methods Programs Biomed ; 176: 173-193, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31200905

ABSTRACT

OBJECTIVE: A colon microarray data is a repository of thousands of gene expressions with different strengths for each cancer cell. It is necessary to detect which genes are responsible for cancer growth. This study presents an exhaustive comparative study of different machine learning (ML) systems which serves two major purposes: (a) identification of high risk differential genes using statistical tests and (b) development of a ML strategy for predicting cancer genes. METHODS: Four statistical tests namely: Wilcoxon sign rank sum (WCSRS), t test, Kruskal-Wallis (KW), and F-test were adapted for cancerous gene identification using their p-values. The extracted gene set was used to classify cancer patients using ten classifiers namely: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), naïve Bayes (NB), Gaussian process classification (GPC), support vector machine (SVM), artificial neural network (ANN), logistic regression (LR), decision tree (DT), Adaboost (AB), and random forest (RF). Performance was then evaluated using cross-validation protocols and standardized metrics viz. accuracy (ACC) and area under the curve (AUC). RESULTS: The colon cancer dataset consists of 2000 genes from 62 patients (40 cancer vs. 22 control). The overall mean ACC of our ML system using all four statistical tests and all ten classifiers was 90.50%. The ML system showed an ACC of 99.81% using a combination WCSRS test and RF-based classifier. This is an improvement of 8% over previously published values in literature. CONCLUSIONS: RF-based model with statistical tests for detection of high risk genes showed the best performance for accurate cancer classification in multi-center clinical trials.


Subject(s)
Colon/metabolism , Colonic Neoplasms/metabolism , Machine Learning , Tissue Array Analysis/methods , Area Under Curve , Bayes Theorem , Decision Trees , Discriminant Analysis , Gene Expression Profiling , Humans , Logistic Models , Models, Statistical , Neural Networks, Computer , Normal Distribution , Oncogenes , Regression Analysis , Risk , Sensitivity and Specificity , Support Vector Machine
9.
Front Biosci (Elite Ed) ; 11(1): 166-185, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31136971

ABSTRACT

Wilson's disease (WD) is an autosomal recessive disorder which is caused by poor excretion of copper in mammalian cells. In this review, various issues such as effective characterization of ATP7B genes, scope of gene network topology in genetic analysis, pattern recognition using different computing approaches and fusion possibilities in imaging and genetic dataset are discussed vividly. We categorized this study into three major sections: (A) WD genetics, (B) diagnosis guidelines and (3) treatment possibilities. We addressed the scope of advanced mathematical modelling paradigms for understanding common genetic sequences and dominating WD imaging biomarkers. We have also discussed current state-of-the-art software models for genetic sequencing. Further, we hypothesized that involvement of machine and deep learning techniques in the context of WD genetics and image processing for precise classification of WD. These computing procedures signify changing roles of various data transformation techniques with respect to supervised and unsupervised learning models.


Subject(s)
Copper-Transporting ATPases/genetics , Deep Learning , Hepatolenticular Degeneration/diagnostic imaging , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/therapy , Humans
10.
Curr Atheroscler Rep ; 21(7): 25, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31041615

ABSTRACT

PURPOSE OF REVIEW: Cardiovascular disease (CVD) and stroke risk assessment have been largely based on the success of traditional statistically derived risk calculators such as Pooled Cohort Risk Score or Framingham Risk Score. However, over the last decade, automated computational paradigms such as machine learning (ML) and deep learning (DL) techniques have penetrated into a variety of medical domains including CVD/stroke risk assessment. This review is mainly focused on the changing trends in CVD/stroke risk assessment and its stratification from statistical-based models to ML-based paradigms using non-invasive carotid ultrasonography. RECENT FINDINGS: In this review, ML-based strategies are categorized into two types: non-image (or conventional ML-based) and image-based (or integrated ML-based). The success of conventional (non-image-based) ML-based algorithms lies in the different data-driven patterns or features which are used to train the ML systems. Typically these features are the patients' demographics, serum biomarkers, and multiple clinical parameters. The integrated (image-based) ML-based algorithms integrate the features derived from the ultrasound scans of the arterial walls (such as morphological measurements) with conventional risk factors in ML frameworks. Even though the review covers ML-based system designs for carotid and coronary ultrasonography, the main focus of the review is on CVD/stroke risk scores based on carotid ultrasound. There are two key conclusions from this review: (i) fusion of image-based features with conventional cardiovascular risk factors can lead to more accurate CVD/stroke risk stratification; (ii) the ability to handle multiple sources of information in big data framework using artificial intelligence-based paradigms (such as ML and DL) is likely to be the future in preventive CVD/stroke risk assessment.


Subject(s)
Myocardial Infarction/diagnostic imaging , Myocardial Infarction/prevention & control , Stroke/diagnostic imaging , Stroke/prevention & control , Ultrasonography/methods , Algorithms , Carotid Artery Diseases/complications , Deep Learning , Humans , Myocardial Infarction/etiology , Plaque, Atherosclerotic/complications , Risk Assessment/methods , Risk Assessment/trends , Risk Factors , Stroke/etiology
11.
Comput Biol Med ; 108: 182-195, 2019 05.
Article in English | MEDLINE | ID: mdl-31005010

ABSTRACT

PURPOSE: Conventional cardiovascular risk factors (CCVRFs) and carotid ultrasound image-based phenotypes (CUSIP) are independently associated with long-term risk of cardiovascular (CV) disease. In this study, 26 cardiovascular risk (CVR) factors which consisted of a combination of CCVRFs and CUSIP together were ranked. Further, an optimal risk calculator using AtheroEdge composite risk score (AECRS1.0) was designed and benchmarked against seven conventional CV risk (CVR) calculators. METHODS: Two types of ranking were performed: (i) ranking of 26 CVR factors and (ii) ranking of eight types of 10-year risk calculators. In the first case, multivariate logistic regression was used to compute the odds ratio (OR) and in the second, receiver operating characteristic curves were used to evaluate the performance of eight types of CVR calculators using SPSS23.0 and MEDCALC12.0 with validation against STATA15.0. RESULTS: The left and right common carotid arteries (CCA) of 202 Japanese patients were examined to obtain 404 ultrasound scans. CUSIP ranked in the top 50% of the 26 covariates. Intima-media thickness variability (IMTV) and IMTV10yr were the most influential carotid phenotypes for left CCA (OR = 250, P < 0.0001 and OR = 207, P < 0.0001 respectively) and right CCA (OR = 1614, P < 0.0001 and OR = 626, P < 0.0001 respectively). However, for the mean CCA, AECRS1.0 and AECRS1.010yr reported the most highly significant OR among all the CVR factors (OR = 1.073, P < 0.0001 and OR = 1.104, P < 0.0001). AECRS1.010yr also reported highest area-under-the-curve (AUC = 0.904, P < 0.0001) compared to seven types of conventional calculators. Age and glycated haemoglobin reported highest OR (1.96, P < 0.0001 and 1.05, P = 0.012) among all other CCVRFs. CONCLUSION: AECRS1.010yr demonstrated the best performance due to presence of CUSIP and ranked at the first place with highest AUC.


Subject(s)
Carotid Artery, Common , Models, Cardiovascular , Stroke , Age Factors , Aged , Aged, 80 and over , Asian People , Carotid Artery, Common/diagnostic imaging , Carotid Artery, Common/metabolism , Carotid Artery, Common/physiopathology , Female , Humans , Japan , Male , Middle Aged , Risk Assessment , Stroke/blood , Stroke/diagnosis , Stroke/diagnostic imaging , Stroke/physiopathology , Ultrasonography
12.
Eur J Radiol ; 114: 14-24, 2019 May.
Article in English | MEDLINE | ID: mdl-31005165

ABSTRACT

The advent of Deep Learning (DL) is poised to dramatically change the delivery of healthcare in the near future. Not only has DL profoundly affected the healthcare industry it has also influenced global businesses. Within a span of very few years, advances such as self-driving cars, robots performing jobs that are hazardous to human, and chat bots talking with human operators have proved that DL has already made large impact on our lives. The open source nature of DL and decreasing prices of computer hardware will further propel such changes. In healthcare, the potential is immense due to the need to automate the processes and evolve error free paradigms. The sheer quantum of DL publications in healthcare has surpassed other domains growing at a very fast pace, particular in radiology. It is therefore imperative for the radiologists to learn about DL and how it differs from other approaches of Artificial Intelligence (AI). The next generation of radiology will see a significant role of DL and will likely serve as the base for augmented radiology (AR). Better clinical judgement by AR will help in improving the quality of life and help in life saving decisions, while lowering healthcare costs. A comprehensive review of DL as well as its implications upon the healthcare is presented in this review. We had analysed 150 articles of DL in healthcare domain from PubMed, Google Scholar, and IEEE EXPLORE focused in medical imagery only. We have further examined the ethic, moral and legal issues surrounding the use of DL in medical imaging.


Subject(s)
Deep Learning/trends , Radiology/trends , Artificial Intelligence/trends , Delivery of Health Care/trends , Forecasting , Humans , Quality of Life , Radiologists/standards , Radiologists/statistics & numerical data , Radiologists/trends
13.
Med Biol Eng Comput ; 57(7): 1553-1566, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30989577

ABSTRACT

Today, the 10-year cardiovascular risk largely relies on conventional cardiovascular risk factors (CCVRFs) and suffers from the effect of atherosclerotic wall changes. In this study, we present a novel risk calculator AtheroEdge Composite Risk Score (AECRS1.0), designed by fusing CCVRF with ultrasound image-based phenotypes. Ten-year risk was computed using the Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study 56 (UKPDS56), UKPDS60, Reynolds Risk Score (RRS), and pooled composite risk (PCR) score. AECRS1.0 was computed by measuring the 10-year five carotid phenotypes such as IMT (ave., max., min.), IMT variability, and total plaque area (TPA) by fusing eight CCVRFs and then compositing them. AECRS1.0 was then benchmarked against the five conventional cardiovascular risk calculators by computing the receiver operating characteristics (ROC) and area under curve (AUC) values with a 95% CI. Two hundred four IRB-approved Japanese patients' left/right common carotid arteries (407 ultrasound scans) were collected with a mean age of 69 ± 11 years. The calculators gave the following AUC: FRS, 0.615; UKPDS56, 0.576; UKPDS60, 0.580; RRS, 0.590; PCRS, 0.613; and AECRS1.0, 0.990. When fusing CCVRF, TPA reported the highest AUC of 0.81. The patients were risk-stratified into low, moderate, and high risk using the standardized thresholds. The AECRS1.0 demonstrated the best performance on a Japanese diabetes cohort when compared with five conventional calculators. Graphical abstract AECRS1.0: Carotid ultrasound image phenotype-based 10-year cardiovascular risk calculator. The figure provides brief overview of the proposed carotid image phenotype-based 10-year cardiovascular risk calculator called AECRS1.0. AECRS1.0 was also benchmarked against five conventional cardiovascular risk calculators (Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study 56 (UKPDS56), UKPDS60, Reynolds Risk Score (RRS), and pooled composite risk (PCR) score).


Subject(s)
Cardiovascular Diseases/etiology , Carotid Arteries/diagnostic imaging , Image Processing, Computer-Assisted/methods , Ultrasonography/methods , Aged , Aged, 80 and over , Asian People , Carotid Arteries/pathology , Carotid Intima-Media Thickness , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/pathology , Female , Humans , Male , Middle Aged , ROC Curve , Risk Factors
14.
Echocardiography ; 36(2): 345-361, 2019 02.
Article in English | MEDLINE | ID: mdl-30623485

ABSTRACT

MOTIVATION: This study presents a novel nonlinear model which can predict 10-year carotid ultrasound image-based phenotypes by fusing nine traditional cardiovascular risk factors (ethnicity, gender, age, artery type, body mass index, hemoglobin A1c, hypertension, low-density lipoprotein, and smoking) with five types of carotid automated image phenotypes (three types of carotid intima-media thickness (IMT), wall variability, and total plaque area). METHODOLOGY: Two-step process was adapted: First, five baseline carotid image-based phenotypes were automatically measured using AtheroEdge™ (AtheroPoint™ , CA, USA) system by two operators (novice and experienced) and an expert. Second, based on the annual progression rates of cIMT due to nine traditional cardiovascular risk factors, a novel nonlinear model was adapted for 10-year predictions of carotid phenotypes. RESULTS: Institute review board (IRB) approved 204 Japanese patients' left/right common carotid artery (407 ultrasound scans) was collected with a mean age of 69 ± 11 years. Age and hemoglobin were reported to have a high influence on the 10-year carotid phenotypes. Mean correlation coefficient (CC) between 10-year carotid image-based phenotype and age was improved by 39.35% in males and 25.38% in females. The area under the curves for the 10-year measurements of five phenotypes IMTave10yr , IMTmax10yr , IMTmin10yr , IMTV10yr , and TPA10yr were 0.96, 0.94, 0.90, 1.0, and 1.0. Inter-operator variability between two operators showed significant CC (P < 0.0001). CONCLUSIONS: A nonlinear model was developed and validated by fusing nine conventional CV risk factors with current carotid image-based phenotypes for predicting the 10-year carotid ultrasound image-based phenotypes which may be used risk assessment.


Subject(s)
Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/epidemiology , Diabetes Mellitus , Aged , Carotid Arteries/diagnostic imaging , Carotid Arteries/pathology , Carotid Artery Diseases/pathology , Cohort Studies , Female , Humans , Japan/epidemiology , Male , Middle Aged , Predictive Value of Tests , Risk Assessment , Ultrasonography/methods
15.
Curr Atheroscler Rep ; 21(2): 7, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30684090

ABSTRACT

PURPOSE OF THE REVIEW: Rheumatoid arthritis (RA) is a chronic, autoimmune disease which may result in a higher risk of cardiovascular (CV) events and stroke. Tissue characterization and risk stratification of patients with rheumatoid arthritis are a challenging problem. Risk stratification of RA patients using traditional risk factor-based calculators either underestimates or overestimates the CV risk. Advancements in medical imaging have facilitated early and accurate CV risk stratification compared to conventional cardiovascular risk calculators. RECENT FINDING: In recent years, a link between carotid atherosclerosis and rheumatoid arthritis has been widely discussed by multiple studies. Imaging the carotid artery using 2-D ultrasound is a noninvasive, economic, and efficient imaging approach that provides an atherosclerotic plaque tissue-specific image. Such images can help to morphologically characterize the plaque type and accurately measure vital phenotypes such as media wall thickness and wall variability. Intelligence-based paradigms such as machine learning- and deep learning-based techniques not only automate the risk characterization process but also provide an accurate CV risk stratification for better management of RA patients. This review provides a brief understanding of the pathogenesis of RA and its association with carotid atherosclerosis imaged using the B-mode ultrasound technique. Lacunas in traditional risk scores and the role of machine learning-based tissue characterization algorithms are discussed and could facilitate cardiovascular risk assessment in RA patients. The key takeaway points from this review are the following: (i) inflammation is a common link between RA and atherosclerotic plaque buildup, (ii) carotid ultrasound is a better choice to characterize the atherosclerotic plaque tissues in RA patients, and (iii) intelligence-based paradigms are useful for accurate tissue characterization and risk stratification of RA patients.


Subject(s)
Arthritis, Rheumatoid/complications , Atherosclerosis/diagnostic imaging , Atherosclerosis/etiology , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/etiology , Deep Learning , Arthritis, Rheumatoid/pathology , Carotid Arteries/pathology , Humans , Inflammation/complications , Inflammation/metabolism , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/etiology , Plaque, Atherosclerotic/metabolism , Risk Assessment , Risk Factors , Tomography, Optical Coherence , Ultrasonography
16.
Comput Biol Med ; 105: 125-143, 2019 02.
Article in English | MEDLINE | ID: mdl-30641308

ABSTRACT

MOTIVATION: AtheroEdge Composite Risk Score (AECRS1.010yr) is an integrated stroke/cardiovascular risk calculator that was recently developed and computes the 10-year risk of carotid image phenotypes by integrating conventional cardiovascular risk factors (CCVRFs). It is therefore important to understand how closely AECRS1.010yr is associated with the ten other currently available conventional cardiovascular risk calculators (CCVRCs). METHODS: The Institutional Review Board of Toho University approved the examination of the left/right common carotid arteries of 202 Japanese patients. Step 1 consists of measurement of AECRS1.010yr, given current image phenotypes and CCVRFs. Step 2 consists of computing the risk score using ten different CCVRCs given CCVR factors: QRISK3, Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study (UKPDS) 56, UKPDS60, Reynolds Risk Score (RRS), Pooled cohort Risk Score (PCRS or ASCVD), Systematic Coronary Risk Evaluation (SCORE), Prospective Cardiovascular Munster Study (PROCAM) calculator, NIPPON, and World Health Organization (WHO) risk. Step 3 consists of computing the closeness factor between AECRS1.010yr and ten CCVRCs using cumulative ranking index derived using eight different statistically derived metrics. RESULTS: AECRS1.010yr reported the highest area-under-the-curve (0.927;P < 0.001) among all the risk calculators. The top three CCVRCs closest to AECRS1.010yr were QRISK3, FRS, and UKPDS60 with cumulative ranking scores of 2.1, 3.0, and 3.8, respectively. CONCLUSION: AECRS1.010yr produced the largest AUC due to the integration of image-based phenotypes with CCVR factors, and ranked at first place with the highest AUC. Cumulative ranking of ten CCVRCs demonstrated that QRISK3 was the closest calculator to AECRS1.010yr, which is also consistent with the industry trend.


Subject(s)
Carotid Arteries/diagnostic imaging , Diabetes Complications/diagnostic imaging , Image Interpretation, Computer-Assisted , Aged , Female , Humans , Male , Middle Aged , Models, Cardiovascular , Risk Assessment , Risk Factors , Stroke , Ultrasonography
17.
Front Biosci (Landmark Ed) ; 24(3): 392-426, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30468663

ABSTRACT

Deep learning (DL) is affecting each and every sphere of public and private lives and becoming a tool for daily use. The power of DL lies in the fact that it tries to imitate the activities of neurons in the neocortex of human brain where the thought process takes place. Therefore, like the brain, it tries to learn and recognize patterns in the form of digital images. This power is built on the depth of many layers of computing neurons backed by high power processors and graphics processing units (GPUs) easily available today. In the current scenario, we have provided detailed survey of various types of DL systems available today, and specifically, we have concentrated our efforts on current applications of DL in medical imaging. We have also focused our efforts on explaining the readers the rapid transition of technology from machine learning to DL and have tried our best in reasoning this paradigm shift. Further, a detailed analysis of complexities involved in this shift and possible benefits accrued by the users and developers.


Subject(s)
Algorithms , Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Machine Learning , Neural Networks, Computer , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods
18.
Med Biol Eng Comput ; 57(2): 543-564, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30255236

ABSTRACT

Manual ultrasound (US)-based methods are adapted for lumen diameter (LD) measurement to estimate the risk of stroke but they are tedious, error prone, and subjective causing variability. We propose an automated deep learning (DL)-based system for lumen detection. The system consists of a combination of two DL systems: encoder and decoder for lumen segmentation. The encoder employs a 13-layer convolution neural network model (CNN) for rich feature extraction. The decoder employs three up-sample layers of fully convolution network (FCN) for lumen segmentation. Three sets of manual tracings were used during the training paradigm leading to the design of three DL systems. Cross-validation protocol was implemented for all three DL systems. Using the polyline distance metric, the precision of merit for three DL systems over 407 US scans was 99.61%, 97.75%, and 99.89%, respectively. The Jaccard index and Dice similarity of DL lumen segmented region against three ground truth (GT) regions were 0.94, 0.94, and 0.93 and 0.97, 0.97, and 0.97, respectively. The corresponding AUC for three DL systems was 0.95, 0.91, and 0.93. The experimental results demonstrated superior performance of proposed deep learning system over conventional methods in literature. Graphical abstract ᅟ.


Subject(s)
Carotid Arteries/physiopathology , Diabetes Mellitus/physiopathology , Stroke/physiopathology , Aged , Deep Learning , Female , Humans , Machine Learning , Male , Neural Networks, Computer , Retrospective Studies , Risk Assessment/methods , Ultrasonography/methods
19.
Indian Heart J ; 70(5): 649-664, 2018.
Article in English | MEDLINE | ID: mdl-30392503

ABSTRACT

BACKGROUND: Common carotid artery lumen diameter (LD) ultrasound measurement systems are either manual or semi-automated and lack reproducibility and variability studies. This pilot study presents an automated and cloud-based LD measurements software system (AtheroCloud) and evaluates its: (i) intra/inter-operator reproducibility and (ii) intra/inter-observer variability. METHODS: 100 patients (83M, mean age: 68±11years), IRB approved, consisted of L/R CCA artery (200 ultrasound images), acquired using a 7.5-MHz linear transducer. The intra/inter-operator reproducibility was verified using three operator's readings. Near-wall and far carotid wall borders were manually traced by two observers for intra/inter-observer variability analysis. RESULTS: The mean coefficient of correlation (CC) for intra- and inter-operator reproducibility between all the three automated reading pairs were: 0.99 (P<0.0001) and 0.97 (P<0.0001), respectively. The mean CC for intra- and inter-observer variability between both the manual reading pairs were 0.98 (P<0.0001) and 0.98 (P<0.0001), respectively. The Figure-of-Merit between the mean of the three automated readings against the four manuals were 98.32%, 99.50%, 98.94% and 98.49%, respectively. CONCLUSIONS: The AtheroCloud LD measurement system showed high intra/inter-operator reproducibility hence can be adapted for vascular screening mode or pharmaceutical clinical trial mode.


Subject(s)
Carotid Artery, Common/diagnostic imaging , Carotid Intima-Media Thickness , Carotid Stenosis/diagnosis , Cloud Computing , Ultrasonography, Doppler/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Pilot Projects , ROC Curve , Reproducibility of Results , Retrospective Studies
20.
J Stroke ; 20(3): 302-320, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30309226

ABSTRACT

Cerebral small vessel disease (cSVD) has a crucial role in lacunar stroke and brain hemorrhages and is a leading cause of cognitive decline and functional loss in elderly patients. Based on underlying pathophysiology, cSVD can be subdivided into amyloidal and non-amyloidal subtypes. Genetic factors of cSVD play a pivotal role in terms of unraveling molecular mechanism. An important pathophysiological mechanism of cSVD is blood-brain barrier leakage and endothelium dysfunction which gives a clue in identification of the disease through circulating biological markers. Detection of cSVD is routinely carried out by key neuroimaging markers including white matter hyperintensities, lacunes, small subcortical infarcts, perivascular spaces, cerebral microbleeds, and brain atrophy. Application of neural networking, machine learning and deep learning in image processing have increased significantly for correct severity of cSVD. A linkage between cSVD and other neurological disorder, such as Alzheimer's and Parkinson's disease and non-cerebral disease, has also been investigated recently. This review draws a broad picture of cSVD, aiming to inculcate new insights into its pathogenesis and biomarkers. It also focuses on the role of deep machine strategies and other dimensions of cSVD by linking it with several cerebral and non-cerebral diseases as well as recent advances in the field to achieve sensitive detection, effective prevention and disease management.

SELECTION OF CITATIONS
SEARCH DETAIL
...