Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Vaccine Res ; 11(2): 209-216, 2022 May.
Article in English | MEDLINE | ID: mdl-35799870

ABSTRACT

Purpose: This study was performed to investigate humoral immune response and adverse events upon the heterologous prime-boost with a single dose of the mRNA-1273 vaccine among fully CoronaVac-vaccinated, infection-naïve healthcare workers in Indonesia. Materials and Methods: One hundred twenty-five eligible healthcare workers were recruited from one hospital for this prospective cohort study. Blood collection was conducted twice, i.e., on 7 days before and 28 days after the booster vaccination. The titer of anti-SARS-CoV-2 receptor-binding domain (RBD) antibodies was quantified accordingly. The post-vaccination adverse event was recorded for both CoronaVac and mRNA-1273 vaccinations. Any breakthrough infection was monitored during the follow-up period. Wilcoxon matched-pairs signed rank test was used to test differences between groups. Results: A significant increase was observed in the titer of anti-SARS-CoV-2 RBD antibodies upon receiving the mRNA-1273 booster (geometric mean titers of 65.57 and 47,445 U/mL in pre- and post-booster, respectively), supporting the argument to use heterologous prime-boost vaccination to improve the protection against COVID-19 in a high-risk population. The mRNA-1273 vaccine, however, caused a higher frequency of adverse events than the CoronaVac vaccine. Nonetheless, the adverse events were considered minor medical events and temporary as all subjects were not hospitalized and fully recovered. Of note, no breakthrough infection was observed during the follow-up to 12 weeks post-booster. Conclusion: The heterologous prime-boost vaccination of healthcare workers with a single dose of the mRNA-1273 vaccine generated a significant elevation in humoral immune response towards RBD of SARS-CoV-2 and was associated with a higher frequency, but minor and transient, adverse events.

2.
Sci Rep ; 9(1): 15160, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31641164

ABSTRACT

Newcastle disease virus (NDV) strongly induces both type I and III antiviral interferons (IFNs-α/-ß and IFN-λ, respectively) in tumor cells while it induces mainly type III IFN in normal cells. Impairment of antiviral type I IFN signaling in tumor cells is thought to be the reason for effective oncolysis. However, there is lack of clarity why lentogenic strain NDV can also induce oncolysis. NDV infection caused apoptosis in normal and tumor cells as demonstrated with the caspase-3 enzyme activation and annexin-V detection. The apoptosis response was inhibited by B18R protein (a type I IFN inhibitor) in tumor cells i.e. A549 and U87MG, and not in normal cells i.e. NB1RGB and HEK293. Similarly, UV-inactivated medium from NDV infection was shown to induce apoptosis in corresponding cells and the response was inhibited in A549 and U87MG cells with the addition of B18R protein. Treatment with combination of IFNs-α/-ß/-λ or IFNs-α/-ß or IFN-λ in NB1RGB, HEK293, A549 and U87MG showed that caspase activity in IFNs-α/-ß/-λ group was the highest, followed with IFN-α/-ß group and IFN-λ group. This suggests that tumor-selectivity of NDV is mainly because of the cumulative effect of type I and III in tumor cells that lead to higher apoptotic effect.


Subject(s)
Antiviral Agents/pharmacology , Apoptosis/drug effects , Interferons/pharmacology , Neoplasms/pathology , Newcastle disease virus/physiology , Cell Line, Tumor , Humans , Models, Biological , Solubility , Viral Proteins/pharmacology , Virus Replication/drug effects
3.
Viral Immunol ; 31(5): 362-370, 2018 06.
Article in English | MEDLINE | ID: mdl-29652648

ABSTRACT

A cross-sectional study on hepatitis B patients in Indonesia showed association of pre-S2 start codon mutation (M120 V) with cirrhosis and hepatocellular carcinoma (HCC), which was dissimilar from studies from other populations where pre-S2 deletion mutation was more prevalent. Different mutation patterns were attributed to different hepatitis B virus (HBV) subgenotypes in each population study. HBV surface proteins are reported to induce the activation of NF-κB, a transcriptional factor known to play an important role in the development of liver disease. This study aimed to see the effects of HBs variants in HBV subgenotype B3 on the expression and activation of NF-κB as one of the mechanisms in inducing advanced liver disease. HBV subgenotypes B3, each carrying wild-type (wt) HBs, M120 V, and pre-S2 deletion mutation were isolated from three HCC patients. HBs genes were amplified and cloned into pcDNA3.1 and were transfected using Lipofectamine into a Huh7 cell line. NF-κB activation was measured through IκB-α expression, which is regulated by NF-κB. RNA expressions for HBs, IκB-α, and NF-κB subunit (p50) were evaluated using real-time PCR. M120 V mutant had a significantly higher mRNA level compared with wt and pre-S2 deletion mutant; however, there were no significant differences in HBs protein expressions. The transcription level of p50 was higher in M120 V mutation compared with HBs wild-type and pre-S2 deletion mutant. NF-κB activation was higher in HBs wild-type compared with the two mutant variants. Pre-S2 mutations had no effect on the increment of NF-κB activation. However, M120 V mutation may utilize a different pathway in liver disease progression that involves high expression of NF-κB subunit, p50.


Subject(s)
Cell Transformation, Viral , Codon, Initiator , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/growth & development , Hepatocytes/pathology , Mutation , NF-kappa B/metabolism , Protein Precursors/genetics , Cell Line , Cross-Sectional Studies , Genotype , Hepatitis B virus/genetics , Hepatocytes/virology , Humans , Indonesia
SELECTION OF CITATIONS
SEARCH DETAIL
...