Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(13): 14932-14946, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585064

ABSTRACT

Linear conjugated molecules consisting of benzothiadiazole (BTD) and phenyl rings are highly efficient organic luminophores. Crystals based on these compounds have great potential for use as light-emitting elements, in particular, scintillation detectors. This paper compares the peculiarities of growth, structure, and fluorescent properties of crystals based on 4,7-diphenyl-2,1,3-benzothiadiazole (P2-BTD) and its organosilicon derivative 4,7-bis(4-(trimethylsilyl)phenyl) BTD ((TMS-P)2-BTD). The conditions for the formation of centimeter-scale single crystals were found for the former, while it was possible to prepare also bulky faceted individual crystals for the latter. The structures of P2-BTD and (TMS-P)2-BTD crystals at 85 and 293 K were investigated by single-crystal X-ray diffraction. The crystal structure of P2-BTD has been refined (sp. gr. P1̅, Z = 4), and for (TMS-P)2-BTD crystals, the structure has been solved for the first time (sp. gr. P21/c, Z = 32). Experimental and theoretical investigations of the absorption-fluorescent properties of solutions and crystals of the molecules have been carried out. The luminophores are characterized by a large Stokes shift for both solutions and crystals with a high fluorescence quantum yield of 75-98% for solutions and 50-85% for the crystals. A solvatochromic effect was observed for solutions of both luminophores: an increase in the values of the fluorescence quantum yield and the excited state lifetime were established with increasing the solvent polarity. Fluorescence properties of solutions and crystals have been analyzed using the data on crystal structure and conformation structure of the molecules as well as density functional theory calculations of their electronic structure. The results have shown that the crystal packing of P2-BTD molecules exhibits uniformity in conformational states, while (TMS-P)2-BTD molecules display a variety of conformational structures in the crystals. This unique combination of features makes them a remarkable example among the other molecular systems for identifying the relationship between the structure and absorption-fluorescence properties through comparative analysis.

2.
J Phys Chem B ; 127(26): 5881-5898, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37347233

ABSTRACT

A series of new tetrachromophoric systems based on stereoregular tetracyclosiloxanes and dibenzoylmethanatoboron difluoride derivatives have been synthesized and characterized by a complex of physicochemical methods. The photophysical properties of the synthesized compounds are studied by electronic absorption, steady-state, and time-resolved fluorescence spectroscopy. In the synthesized compounds, four dibenzoylmethanatoboron difluoride (DBMBF2)-based fluorophores are in an all-cis arrangement with respect to a cyclotetrasiloxane scaffold. DFT calculations predict that they can form H-type dimers, trimers, or tetramers with an antiparallel orientation of their ground-state dipole moments. Under UV excitation, solutions of these compounds in polar and nonpolar solvents exhibit complex fluorescence consisting of monomer- and excimer-like emissions with different lifetimes. Global fitting analysis reveals the presence of at least four kinetically distinguishable species in the excited state. The studied compounds in solutions have CIE chromaticity coordinates very close to the white color point and are promising objects for the development of next-generation single-emission materials for white illumination.

3.
J Phys Chem B ; 126(51): 10893-10906, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36519926

ABSTRACT

The synthesis and photophysical investigation of three novel meta-conjugated molecules based on 3,1,2-benzothiadiazole and thiophene-2,5-diyl derivatives linked through 1,3,5-benzene branching units are described. Each of them is a symmetrical molecule with two branching units, four identical lateral thiophene-containing fragments, and one central benzothiadiazole-containing fragment. To study the effect of the chemical structure on their photophysical properties, the molecules with different linearly conjugated lateral and central fragments due to incorporation of additional thiophene rings were synthesized and compared. It was shown that absorption spectra of the meta-conjugated molecules can be represented as a sum of absorption bands of model compounds for their peripheral and central fragments containing a common benzene ring being branched at the 1,3,5-benzene unit in the meta-conjugated molecules. Therefore, they cannot be considered simply as isolated π-conjugated systems of their peripheral and central fragments. Instead, DFT calculations showed that several transitions between the orbitals located in different regions of the meta-conjugated molecule are responsible for the formation of their absorption spectra, and they strongly depend on the degree of their overlapping. Theoretical absorption spectra reconstructed from the DFT data demonstrated a good agreement with the experimental results: the transitions with larger oscillator strength correspond to the bands with higher molar extinction coefficients and vice versa. It was shown that luminescence spectral maxima of the meta-conjugated molecules monotonically shift to the lower energy from 489 to 540 and 613 nm with increasing the number of thiophene rings in the peripheral and central fragments, respectively. However, luminescence quantum yield of the meta-conjugated molecules critically depends on the length of linearly conjugated fragments in its structure decreasing from 24% to 1.3% with increasing the number of thiophene rings in the lateral fragments but increasing to 90% in the molecule with more thiophene rings in both types of the fragments. The results obtained are well correlated to the ratio of radiative and nonradiative deactivation rate constants of the meta-conjugated molecules that indicates a high rate of internal conversion between the excited states corresponding to different fragments of the molecule. The CV measurements allowed estimating the HOMO, LUMO, and bandgap values of the target and model compounds, which confirm the presence of meta-conjugation within the molecules investigated. Thus, connection of linearly conjugated fragments through meta-positions (meta-conjugation) of a benzene ring leads to an intermediate option between fully conjugated and nonconjugated molecules due to partial delocalization of electron density through the 1,3,5-substituted benzene branching center.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 261-269, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35411864

ABSTRACT

A new linear luminophore consisting of five conjugated units of oxazole, phenylene and a central benzothiadiazole fragment, 4,7-bis[4-(1,3-oxazol-5-yl)phenyl]-2,1,3-benzothiadiazole, has been synthesized and characterized. Needle-like single-crystal samples up to 10 mm in length were obtained by physical vapor transport. The crystal structure was determined at 95 K and 293 K using single-crystal X-ray diffraction. With decreasing temperature, the space group P21/n does not change, but the unit-cell volume of the crystal decreases. The presence of intra- and intermolecular hydrogen bonds was established. Melting parameters (Tm = 305.5°C, ΔHm = 52.2 kJ mol-1) and the presence of a liquid-crystalline mesophase (TLC = 336.3°C, ΔHLC = 1.4 kJ mol-1) were determined by differential scanning calorimetry and in situ thermal polarization optical microscopy studies. The presence of linear chains of hydrogen bonds ensures high stability of the crystal structure in a wide temperature range. The luminophore is characterized by a large Stokes shift (5120-5670 cm-1) and a high quantum yield of fluorescence, reaching 96% in solutions (λmax = 517 nm) and 27% in thin crystalline films (λmax = 529 nm). The calculated absorption and emission spectra are in good agreement with the experimental data. Because of the excellent optical properties and high thermal stability, the new linear luminophore has great potential for application in organic photonics and optoelectronic devices.


Subject(s)
Crystallization , Calorimetry, Differential Scanning , Crystallography, X-Ray , Hydrogen Bonding , Thiadiazoles
5.
Polymers (Basel) ; 14(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35215646

ABSTRACT

The reaction of ß-diketophosphazene with the europium (III) salt synthesized the corresponding metal complex which was structured with (3-aminopropyl)triethoxysilane and treated with dibenzoylmethane for additional coordination of europium atoms. The polymer thus obtained exhibits luminescence with a maximum of 615 nm, which is characteristic of europium. The polymer is thermally stable up to 300 °C, the coating based on it has a contact angle of 101°, and the adhesive strength of the coating to non-finished glass (according to ISO 2409: 2013) is 1 point.

6.
Sci Rep ; 10(1): 21198, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33273567

ABSTRACT

Triphenylamine-based small push-pull molecules have recently attracted substantial research attention due to their unique optoelectronic properties. Here, we investigate the excited state de-excitation dynamics and exciton diffusion in TPA-T-DCV-Ph-F small molecule, having simple chemical structure with asymmetrical architecture and end-capped with electron-withdrawing p-fluorodicyanovinyl group. The excited state lifetime in diluted solutions (0.04 ns in toluene and 0.4 ns in chloroform) are found to be surprisingly shorter compared to the solid state (3 ns in PMMA matrix). Time-dependent density functional theory indicates that this behavior originates from non-radiative relaxation of the excited state through a conical intersection between the ground and singlet excited state potential energy surfaces. Exciton diffusion length of ~ 16 nm in solution processed films was retrieved by employing time-resolved photoluminescence volume quenching measurements with Monte Carlo simulations. As means of investigating the device performance of TPA-T-DCV-Ph-F, we manufactured solution and vacuum processed bulk heterojunction solar cells that yielded efficiencies of ~ 1.5% and ~ 3.7%, respectively. Our findings demonstrate that the short lifetime in solutions does not hinder per se long exciton diffusion length in films thereby granting applications of TPA-T-DCV-Ph-F and similar push-pull molecules in vacuum and solution processable devices.

7.
Chempluschem ; 85(6): 1111-1119, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32237221

ABSTRACT

Four tetrahedral silicon-centered derivatives of dibenzoylmethanatoboron difluoride (DBMBF2 ) were synthesized and characterized. Their structural and optical features both in solution and the solid state were investigated by using X-ray crystallography, steady-state and time-dependent spectroscopy, and DFT-based calculations. In dilute solutions, the molar absorption coefficient increases from 40500 to 175200 M-1 cm-1 as the number of DBMBF2 fragments in a molecule increases from one to four, while, in contrast, the nonradiative rate constant of fluorescence decay decreases from 0.49 to 0.34. In the solid state, absorption and emission spectra depend on the degree of crystallinity and microcrystal size. The tris-DBMBF2 derivative forms fully overlapping dimeric structures that exhibit excimer-like fluorescence, which is accurately predicted by the quantum-chemical calculations. The mono-DBMBF2 derivative exhibits fully reverse mechanofluorochromic behavior.

8.
ACS Appl Mater Interfaces ; 12(8): 9507-9519, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32009377

ABSTRACT

Organic optoelectronics requires materials combining bright luminescence and efficient ambipolar charge transport. Thiophene-phenylene co-oligomers (TPCOs) are promising highly emissive materials with decent charge-carrier mobility; however, they typically show poor electron injection in devices, which is usually assigned to high energies of their lowest unoccupied molecular orbitals (LUMOs). A widely used approach to lower the frontier orbitals energy levels of a conjugated molecule is its fluorination. In this study, we synthesized three new fluorinated derivatives of one of the most popular TPCOs, 2,2'-(1,4-phenylene)bis[5-phenylthiophene] (PTPTP) and studied them by cyclic voltammetry, absorption, photoluminescence, and Raman spectroscopies. The obtained data reveal a positive effect of fluorination on the optoelectronic properties of PTPTP: LUMO levels are finely tuned, and photoluminescence quantum yield and absorbance are increased. We then grew crystals from fluorinated PTPTPs, resolved their structures, and showed that fluorination dramatically affects the packing motif and facilitates π-stacking. Finally, we fabricated thin-film organic field-effect transistors (OFETs) and demonstrated a strong impact of fluorination on charge injection/transport for both types of charge carriers, namely, electrons and holes. Specifically, balanced ambipolar charge transport and electroluminescence were observed only in the OFET active channel based on the partially fluorinated PTPTP. The obtained results can be extended to other families of conjugated oligomers and highlight the efficiency of fluorination for rational design of organic semiconductors for optoelectronic devices.

9.
RSC Adv ; 10(47): 28128-28138, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-35519088

ABSTRACT

Properties of the organic semiconductors can be finely tuned via changes in their molecular structure. However, the relationship between the molecular structure, molecular packing, and (opto)electronic properties of the organic semiconductors to guide their smart design remains elusive. In this study, we address computationally and experimentally the impact of subtle modification of a thiophene-phenylene co-oligomer CF3-PTTP-CF3 on the molecular properties, crystal structure, charge transport, and optoelectronic properties. This modification consists in the substitution of two C-H atom pairs by N atoms in the thiophene units and hence converting them to thiazole units. A dramatic effect of the N-substitution on the crystal structure-the crossover from the herringbone packing motif to π-stacking-is attributed to significant changes in the molecular electrostatic potential. The changes in the molecular and crystal structure resulting from the N-substitution clearly reveal themselves in the Raman spectra. The increase of the calculated electron mobility in the corresponding crystals as a result of the N-substitution is rationalized in terms of the changes in the molecular and crystal structure. The charge transport, electroluminescence, and photoelectric properties are compared in thin-film organic field-effect transistors based on CF3-PTTP-CF3 and its N-substituted counterpart. An intriguing similarity between the effects of N-substitution in the thiophene rings and fluorination of the thiophene-phenylene oligomer is revealed, which is probably associated with a more general effect of electronegative substitution. The obtained results are anticipated to facilitate the rational design of organic semiconductors.

10.
Opt Express ; 27(22): 31967-31977, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31684418

ABSTRACT

Light-converting polypropylene spunbond was first used in the study of the key physiological parameters of plants. A comparative study of the functioning of the photosynthetic apparatus and the dynamics of growth in late cabbage plants (Olga variety) and leaf lettuce (Emerald variety) was conducted using the ordinary nonwoven polypropylene fabric (spunbond) (density 30 g·m-2) and the spunbond containing a photoluminophore (PL) (1.6% yttrium oxysulfide doped with europium). The plants were grown in a glass greenhouse without spunbond and under the spunbond containing and not containing the PL that transforms a part of UV-radiation into red light radiation. The use of the spunbond led to a decrease in the rate of photosynthesis, activity of the photosystem 2, and the accumulation of plant biomass and to an increase in the stomatal conductance. By contrast to unmodified spunbond, the application of the spunbond containing the PL led to an increase in the rate of photosynthesis, the water-use efficiency (WUE), and the accumulation of the total biomass of plants by 30-50% but to a decrease in the transpiration rate and the stomatal conductance. It is assumed that the positive effect of the PL is associated with an increase in the fraction of fluorescent red light, which enhances photosynthetic activity and accelerates plant growth.


Subject(s)
Agriculture , Brassica/growth & development , Brassica/radiation effects , Lactuca/growth & development , Lactuca/radiation effects , Light , Photosynthesis/radiation effects , Textiles , Biomass , Polypropylenes/chemistry , Spectrometry, Fluorescence
11.
Phys Chem Chem Phys ; 21(22): 11578-11588, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-30968108

ABSTRACT

Owing to the combination of efficient charge transport and bright luminescence, thiophene-phenylene co-oligomers (TPCOs) are promising materials for organic light-emitting devices such as diodes, transistors and lasers. The synthetic flexibility of TPCOs enables facile tuning of their properties. In this study, we address the effect of various electron-donating and electron-withdrawing symmetric terminal substituents (fluorine, methyl, trifluoromethyl, methoxy, tert-butyl, and trimethylsilyl) on frontier orbitals, charge distribution, static polarizabilities, molecular vibrations, bandgaps and photoluminescence quantum yields of 5,5'-diphenyl-2,2'-bithiophene (PTTP). By combining DFT calculations with cyclic voltammetry and absorption, photoluminescence, and Raman spectroscopies, we show that symmetric terminal substitution tunes the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies of TPCOs within a range of ∼0.7 eV, shifts the frequencies of the vibrational modes associated with the phenyl rings, changes the photoluminescence quantum yield by about two-fold and slightly changes the bandgap by ∼0.1 eV. We demonstrate that these effects are governed by two factors: the Hammet constant of the substituents and their involvement in the π-conjugation/hyperconjugation described by the effective conjugation length of the substituted oligomer. A detailed picture underlying the effect of the terminal substituents on the electronic, vibrational and optical properties of TPCOs is presented. Overall, the unraveled relationships between the structure and the properties of the substituted PTTPs should facilitate a rational design of π-conjugated (co-)oligomers for efficient organic optoelectronic devices.

12.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 6): 1076-1085, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-32830687

ABSTRACT

The synthesis, growth from solutions and structure of crystals of a new linear thiophene-phenylene co-oligomer with a central benzothiadiazole fragment with a conjugated core, (TMS-2T-Ph)2-BTD, are presented. Single-crystal samples in the form of needles with a length of up to 7 mm were grown and their crystal structure was determined at 85 K and 293 K using single-crystal X-ray diffraction. The conformational differences between the crystal structures are insignificant. The parameters of melting and liquid crystalline phase transitions of (TMS-2T-Ph)2-BTD were established using differential scanning calorimetry and the thermal stability of the crystals was investigated using thermogravimetric analysis. The optical absorption and photoluminescence spectra of the solutions and crystals of (TMS-2T-Ph)2-BTD were obtained, and the kinetics of their photodegradation under the action of UV radiation were studied.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 175: 177-184, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28038375

ABSTRACT

A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem=433 and 445nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.

14.
ACS Appl Mater Interfaces ; 8(16): 10088-92, 2016 04 27.
Article in English | MEDLINE | ID: mdl-26785446

ABSTRACT

Thiophene-phenylene co-oligomers (TPCOs) are among the most promising materials for organic light emitting devices. Here we report on record high among TPCO single crystals photoluminescence quantum yield reaching 60%. The solution-grown crystals are stronger luminescent than the vapor-grown ones, in contrast to a common believe that the vapor-processed organic electronic materials show the highest performance. We also demonstrate that the solution-grown TPCO single crystals perform in organic field effect transistors as good as the vapor-grown ones. Altogether, the solution-grown TPCO crystals are demonstrated to hold great potential for organic electronics.

15.
Sci Rep ; 4: 6549, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25293808

ABSTRACT

Organic luminophores are widely used in various optoelectronic devices, which serve for photonics, nuclear and particle physics, quantum electronics, medical diagnostics and many other fields of science and technology. Improving their spectral-luminescent characteristics for particular technical requirements of the devices is a challenging task. Here we show a new concept to universal solution of this problem by creation of nanostructured organosilicon luminophores (NOLs), which are a particular type of dendritic molecular antennas. They combine the best properties of organic luminophores and inorganic quantum dots: high absorption cross-section, excellent photoluminescence quantum yield, fast luminescence decay time and good processability. A NOL consists of two types of covalently bonded via silicon atoms organic luminophores with efficient Förster energy transfer between them. Using NOLs in plastic scintillators, widely utilized for radiation detection and in elementary particles discoveries, led to a breakthrough in their efficiency, which combines both high light output and fast decay time. Moreover, for the first time plastic scintillators, which emit light in the desired wavelength region ranging from 370 to 700 nm, have been created. We anticipate further applications of NOLs as working elements of pulsed dye lasers in photonics, optoelectronics and as fluorescent labels in biology and medical diagnostics.

16.
Org Lett ; 10(13): 2753-6, 2008 Jul 03.
Article in English | MEDLINE | ID: mdl-18543936

ABSTRACT

Three generations of bithiophenesilane monodendrons and dendrimers consisting of 3-45 2,2'-bithiene-5,5'-diyl units were synthesized by means of effective coupling reactions between the corresponding bithienyllithium derivatives and chlorosilanes. These compounds show efficient photoluminescence in the violet-blue region, the quantum yield of which is 5-15 times higher than that for the parent bithiophene or bithiophenesilanes.

SELECTION OF CITATIONS
SEARCH DETAIL
...