Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113303

ABSTRACT

Cancer is the second leading cause of global mortality and claims approximately 10 million lives annually. Despite advances in treatments such as surgery, chemotherapy, and immunotherapy, resistance to these methods has emerged. Multidrug resistance (MDR), where cancer cells resist diverse treatments, undermines therapy effectiveness, escalating mortality rates. MDR mechanisms include, among others, drug inactivation, reduced drug uptake, enhanced DNA repair, and activation of survival pathways such as autophagy. Moreover, MDR mechanisms can confer resistance to other therapies like radiotherapy. Understanding these mechanisms is crucial for improving treatment efficacy and identifying new therapeutic targets. Extracellular vesicles (EVs) have gathered attention for their role in cancer progression, including MDR development through protein transfer and genetic reprogramming. Autophagy, a process balancing cellular resources, also influences MDR. The intersection of EVs and autophagy further complicates the understanding of MDR. Both extracellular (exosomes, microvesicles) and intracellular (autophagic) vesicles contribute to therapy resistance by regulating the tumor microenvironment, facilitating cell communication, and modulating drug processing. While much is known about these pathways, there is still a need to explore their potential for predicting treatment responses and understanding tumor heterogeneity.

2.
Biochim Biophys Acta Gen Subj ; 1868(9): 130672, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025337

ABSTRACT

BACKGROUND: Transport of molecules via exosomes is one of the factors involved in thyroid cancer development, and transported molecules may serve as cancer biomarkers. The aim of the study was to characterize protein content of thyroid-derived exosomes and their functional effect exerted on recipient cells. METHODS: LC-MS/MS proteomics of exosomes released by FTC and 8305C thyroid carcinoma cell lines, and Nthy-ori 3-1 normal thyroid follicular cells was performed, followed by bioinformatic analysis and functional tests (wound healing and Alamar Blue assays). RESULTS: Exosomes from Nthy-ori 3-1 cells had the highest number of 1504 proteins, while in exosomes from thyroid carcinoma FTC and 8305C cells 730 and 1304 proteins were identified, respectively. For proteins uniquely found in FTC- and 8305C-derived exosomes, enriched cancer-related gene ontology categories included cell adhesion, positive regulation of cell migration, N-glycosylation, drug resistance, and response to NK/T cell cytotoxicity. Furthermore, through label-free quantification (that identified differentially expressed proteins) and comparison with The Human Protein Atlas database several potential diagnostic and/or prognostic biomarkers were indicated. Finally, exosomes from FTC and 8305C cells displayed ability to stimulate migratory properties of recipient Nthy-ori 3-1 cells. Additionally, 8305C-derived exosomes increased recipient cell viability. CONCLUSIONS: Multiple proteins identified in thyroid cancer-derived exosomes have a direct link to thyroid cancer progression. Also, in functional tests exosomes enhanced growth and dissemination of non-transformed thyroid cells. GENERAL SIGNIFICANCE: The obtained results expands the knowledge concerning the role of exosomal proteins in thyroid cancer and indicate potential biomarkers for further evaluation in clinical settings.


Subject(s)
Exosomes , Proteomics , Thyroid Gland , Thyroid Neoplasms , Exosomes/metabolism , Humans , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Proteomics/methods , Cell Line, Tumor , Thyroid Gland/metabolism , Thyroid Gland/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Homeostasis , Biomarkers, Tumor/metabolism , Cell Movement , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL