Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38668226

ABSTRACT

The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted molecular beam epitaxy (PA-MBE) system. The substrate for the growth was a few-layer 2D MoS2 deposited on sapphire using chemical vapor deposition (CVD). Three different Ga fluxes were provided by the gallium source of the K-cell at temperatures of 825, 875, and 925 °C, respectively. After the growth, RHEED, HR-XRD, and TEM were conducted to study the crystal structure of GaN films. The surface morphology was obtained using FE-SEM and AFM. Chemical composition was confirmed by XPS and EDS. Raman and PL spectra were carried out to investigate the optical properties of GaN films. According to the characterizations of GaN films, the van der Waals epitaxial growth mechanism of GaN films changed from 3D to 2D with the increase in Ga flux, provided by higher temperatures of the K-cell. GaN films grown at 750 °C for 3 h with a K-cell temperature of 925 °C demonstrated the greatest crystal quality, chemical composition, and optical properties. The heterostructure of 3D GaN on 2D MoS2 was integrated successfully using the low-temperature PA-MBE technique, which could be applied to novel electronics and optoelectronics.

2.
Discov Nano ; 18(1): 60, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37382746

ABSTRACT

The droplet epitaxy of indium gallium nitride quantum dots (InGaN QDs), the formation of In-Ga alloy droplets in ultra-high vacuum and then surface nitridation by plasma treatment, is firstly investigated by using plasma-assisted molecular beam epitaxy. During the droplet epitaxy process, in-situ reflection high energy electron diffraction patterns performs the amorphous In-Ga alloy droplets transform to polycrystalline InGaN QDs, which are also confirmed by the characterizations of transmission electron microscopy and X-ray photoelectron spectroscopy. The substrate temperature, In-Ga droplet deposition time, and duration of nitridation are set as parameters to study the growth mechanism of InGaN QDs on Si. Self-assembled InGaN QDs with a density of 1.33 × 1011 cm-2 and an average size of 13.3 ± 3 nm can be obtained at the growth temperature of 350 °C. The photoluminescence emissions of uncapped InGaN QDs in wavelength of the visible red (715 nm) and infrared region (795 and 857 nm) are observed. The formation of high-indium composition of InGaN QDs via droplet epitaxy technique could be applied in long wavelength optoelectronic devices.

3.
J Mech Behav Biomed Mater ; 142: 105862, 2023 06.
Article in English | MEDLINE | ID: mdl-37086523

ABSTRACT

Poly(methyl methacrylate) (PMMA)-based scaffolds have been produced using the granule casting method with grain sizes M80-100 and M100-140. The novelty of this study was the application of the cold-cutting method (CCm) to reduce the PMMA granule size. PMMA granule shape, granule size (mesh), and sintering temperature were the primary variables in manufacturing PMMA scaffolds. CCm was applied to reduce the granule size of commercial PMMA, which was originally solid cylindrical, by lowering the temperature to 3.5 °C, 0 °C, and-8.3 °C. PMMA granules that had been reduced were sieved with mesh sizes M80-100 and M100-140. Green bodies were made by the granule casting method using an aluminum mold measuring 8 × 8 × 8 mm3. The sintering process was carried out at temperatures varying from 115 °C to 140 °C, a heating rate of 5 °C/min, and a holding time of 2 h, the cooling process was carried out in a furnace. The characterization of the PMMA-based scaffolds' properties was carried out by observing the microstructure with SEM, analyzing the distribution of pore sizes with ImageJ software, and testing the porosity, the phase, with XRD, and the compressive strength. The best results from the overall analysis were the M80-100 PMMA scaffold treated at a sintering temperature of 130 °C with compressive strength, porosity, and pore size distribution values of 8.2 MPa, 62.0%, and 121-399 µm, respectively, and the M100-140 one treated at a sintering temperature of 135 °C with compressive strength, porosity, and pore size distribution values of 12.1 MPa, 61.2%, and 140-366 µm, respectively. There were interconnected pores in the PMMA scaffolds, as evidenced by the SEM images. There was no PMMA phase change between before and after the sintering process.


Subject(s)
Polymethyl Methacrylate , Tissue Scaffolds , Porosity , Tissue Scaffolds/chemistry , Compressive Strength , Temperature , Tissue Engineering , Materials Testing
4.
Nanomaterials (Basel) ; 11(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073367

ABSTRACT

Van der Waals epitaxial GaN thin films on c-sapphire substrates with a sp2-bonded two-dimensional (2D) MoS2 buffer layer, prepared by pulse laser deposition, were investigated. Low temperature plasma-assisted molecular beam epitaxy (MBE) was successfully employed for the deposition of uniform and ~5 nm GaN thin films on layered 2D MoS2 at different substrate temperatures of 500, 600 and 700 °C, respectively. The surface morphology, surface chemical composition, crystal microstructure, and optical properties of the GaN thin films were identified experimentally by using both in situ and ex situ characterizations. During the MBE growth with a higher substrate temperature, the increased surface migration of atoms contributed to a better formation of the GaN/MoS2 heteroepitaxial structure. Therefore, the crystallinity and optical properties of GaN thin films can obviously be enhanced via the high temperature growth. Likewise, the surface morphology of GaN films can achieve a smoother and more stable chemical composition. Finally, due to the van der Waals bonding, the exfoliation of the heterostructure GaN/MoS2 can also be conducted and investigated by transmission electron microscopy. The largest granular structure with good crystallinity of the GaN thin films can be observed in the case of the high-temperature growth at 700 °C.

SELECTION OF CITATIONS
SEARCH DETAIL