Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 117(23): 234502, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982655

ABSTRACT

We demonstrate the phenomenon of induced-charge capacitive deionization that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electric field. The external electric field induces an electric dipole in the porous particle, leading to its capacitive charging by both cations and anions at opposite poles. This regime is characterized by a long charging time, which results in significant changes in salt concentration in the electrically neutral bulk, on the scale of the particle. We qualitatively demonstrate the effect of advection on the spatiotemporal concentration field, which, through diffusiophoresis, may introduce corrections to the electrophoretic mobility of such particles.

2.
Phys Chem Chem Phys ; 15(7): 2309-20, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23295944

ABSTRACT

Understanding and leveraging physicochemical processes at the pore scale are believed to be essential to future performance improvements of supercapacitors and capacitive desalination (CD) cells. Here, we report on a combination of electrochemical experiments and fully atomistic simulations to study the effect of pore size and surface charge density on the capacitance of graphitic nanoporous carbon electrodes. Specifically, we used cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) to study the effect of potential and pore size on the capacitance of nanoporous carbon foams. Molecular dynamics simulations were performed to study the pore-size dependent accumulation of aqueous electrolytes in slit-shaped graphitic carbon pores of different widths (0.65 to 1.6 nm). Experimentally, we observe a pronounced increase of the capacitance of sub-nm pores as the applied potential window gets wider, from a few F g(-1) for narrow potential ranges (-0.3 to 0.3 V vs. Ag/AgCl) to ~40 F g(-1) for wider potential windows (-0.9 V to 0.9 V vs. Ag/AgCl). By contrast, the capacitance of wider pores does not depend significantly on the applied potential window. Molecular dynamics simulations confirm that the penetration of ions into pores becomes more difficult with decreasing pore width and increasing strength of the hydration shell. Consistent with our experimental results, we observe a pore- and ion-size dependent threshold-like charging behavior when the pore width becomes comparable to the size of the hydrated ion (0.65 nm pores for Na(+) and 0.79 nm pores for Cl(-) ions). The observed pore-size and potential dependent accumulation of ions in slit-shaped carbon pores can be explained by the hydration structure of the ions entering the charged pores. The results are discussed in view of their effect on energy-storage and desalination efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...