Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cancer Res ; 81(7): 1840-1852, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33531373

ABSTRACT

The heterogeneous composition of solid tumors is known to impact disease progression and response to therapy. Malignant cells coexist in different regulatory states that can be accessed transcriptomically by single-cell RNA sequencing, but these methods have many caveats related to sensitivity, noise, and sample handling. We revised a statistical fluctuation analysis called stochastic profiling to combine with 10-cell RNA sequencing, which was designed for laser-capture microdissection (LCM) and extended here for immuno-LCM. When applied to a cohort of late-onset, early-stage luminal breast cancers, the integrated approach identified thousands of candidate regulatory heterogeneities. Intersecting the candidates from different tumors yielded a relatively stable set of 710 recurrent heterogeneously expressed genes (RHEG), which were significantly variable in >50% of patients. RHEGs were not strongly confounded by dissociation artifacts, cell-cycle oscillations, or driving mutations for breast cancer. Rather, RHEGs were enriched for epithelial-to-mesenchymal transition genes and, unexpectedly, the latest pan-cancer assembly of driver genes across cancer types other than breast. These findings indicate that heterogeneous transcriptional regulation conceivably provides a faster, reversible mechanism for malignant cells to evaluate the effects of potential oncogenes or tumor suppressors on cancer hallmarks. SIGNIFICANCE: Profiling intratumor heterogeneity of luminal breast carcinoma cells identifies a recurrent set of genes, suggesting sporadic activation of pathways known to drive other types of cancer.See related articles by Schaff and colleagues, p. 1853 and Sutcliffe and colleagues, p. 1868.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Breast , Breast Neoplasms/genetics , Female , Gene Expression Profiling , Humans , Oncogenes , Tumor Microenvironment
2.
Cancer Res ; 81(7): 1868-1882, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33531372

ABSTRACT

Cancer evolves from premalignant clones that adopt unusual cell states to achieve transformation. We previously pinpointed the oligodendrocyte precursor cell (OPC) as a cell of origin for glioma, but the early changes of mutant OPCs during premalignancy remained unknown. Using mice engineered for inducible Nf1-Trp53 loss in OPCs, we acutely isolated labeled mutant OPCs by laser-capture microdissection, determined global gene-expression changes by bulk RNA sequencing, and compared with cell-state fluctuations at the single-cell level by stochastic profiling, which uses RNA-sequencing measurements from random pools of 10 mutant cells. At 12 days after Nf1-Trp53 deletion, bulk differences were mostly limited to mitotic hallmarks and genes for ribosome biosynthesis, and stochastic profiling revealed a spectrum of stem-progenitor (Axl, Aldh1a1), proneural, and mesenchymal states as potential starting points for gliomagenesis. At 90 days, bulk sequencing detected few differentially expressed transcripts, whereas stochastic profiling revealed cell states for neurons and mural cells that do not give rise to glial tumors, suggesting cellular dead-ends for gliomagenesis. Importantly, mutant OPCs that strongly expressed key effectors of nonsense-mediated decay (Upf3b) and homology-dependent DNA repair (Rad51c, Slx1b, Ercc4) were identified along with DNA-damage markers, suggesting transcription-associated replication stress. Analysis of 10-cell transcriptomes at 90 days identified a locus of elevated gene expression containing an additional repair endonuclease (Mus81) and Rin1, a Ras-Raf antagonist and possible counterbalance to Nf1 loss, which was microdeleted or downregulated in gliomas at 150 days. These hidden cell-state variations uncover replication stress as a potential bottleneck that must be resolved for glioma initiation. SIGNIFICANCE: Profiling premalignant cell states in a mouse model of glioma uncovers regulatory heterogeneity in glioma cells-of-origin and defines a state of replication stress that precedes tumor initiation.See related articles by Singh and colleagues, p. 1840 and Schaff and colleagues, p. 1853.


Subject(s)
Breast Neoplasms , Glioma , Oligodendrocyte Precursor Cells , Animals , Cell Transformation, Neoplastic , DNA-Binding Proteins , Endonucleases , Female , Glioma/genetics , Humans , Mice , Oligodendroglia , RNA-Binding Proteins
3.
Cancer Res ; 81(7): 1853-1867, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33531375

ABSTRACT

Small-cell lung cancers derive from pulmonary neuroendocrine cells, which have stem-like properties to reprogram into other cell types upon lung injury. It is difficult to uncouple transcriptional plasticity of these transformed cells from genetic changes that evolve in primary tumors or secondary metastases. Profiling of single cells is also problematic if the required sample dissociation activates injury-like signaling and reprogramming. Here we defined cell-state heterogeneities in situ through laser capture microdissection-based 10-cell transcriptomics coupled with stochastic-profiling fluctuation analysis. In labeled cells from a small-cell lung cancer mouse model initiated by neuroendocrine deletion of Rb1-Trp53, variations in transcript abundance revealed cell-to-cell differences in regulatory state in vitro and in vivo. Fluctuating transcripts in spheroid culture were partly shared among Rb1-Trp53-null models, and heterogeneities increased considerably when cells were delivered intravenously to colonize the liver. Colonization of immunocompromised animals drove a fractional appearance of alveolar type II-like markers and poised cells for paracrine stimulation from immune cells and hepatocytes. Immunocompetency further exaggerated the fragmentation of tumor states in the liver, yielding mixed stromal signatures evident in bulk sequencing from autochthonous tumors and metastases. Dozens of transcript heterogeneities recurred irrespective of biological context; their mapped orthologs brought together observations of murine and human small-cell lung cancer. Candidate heterogeneities recurrent in the liver also stratified primary human tumors into discrete groups not readily explained by molecular subtype but with prognostic relevance. These data suggest that heterotypic interactions in the liver and lung are an accelerant for intratumor heterogeneity in small-cell lung cancer. SIGNIFICANCE: These findings demonstrate that the single-cell regulatory heterogeneity of small-cell lung cancer becomes increasingly elaborate in the liver, a common metastatic site for the disease.See related articles by Singh and colleagues, p. 1840 and Sutcliffe and colleagues, p. 1868.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Female , Humans , Lung , Lung Neoplasms/genetics , Mice , Neoplasm Recurrence, Local , Small Cell Lung Carcinoma/genetics , Tumor Microenvironment
4.
J Biol Chem ; 296: 100125, 2021.
Article in English | MEDLINE | ID: mdl-33243834

ABSTRACT

Caloric restriction (CR) improves health span and life span of organisms ranging from yeast to mammals. Understanding the mechanisms involved will uncover future interventions for aging-associated diseases. In budding yeast, Saccharomyces cerevisiae, CR is commonly defined by reduced glucose in the growth medium, which extends both replicative and chronological life span (CLS). We found that conditioned media collected from stationary-phase CR cultures extended CLS when supplemented into nonrestricted (NR) cultures, suggesting a potential cell-nonautonomous mechanism of CR-induced life span regulation. Chromatography and untargeted metabolomics of the conditioned media, as well as transcriptional responses associated with the longevity effect, pointed to specific amino acids enriched in the CR conditioned media (CRCM) as functional molecules, with L-serine being a particularly strong candidate. Indeed, supplementing L-serine into NR cultures extended CLS through a mechanism dependent on the one-carbon metabolism pathway, thus implicating this conserved and central metabolic hub in life span regulation.


Subject(s)
Caloric Restriction , Carbon/metabolism , Saccharomyces cerevisiae/metabolism , Serine/metabolism , Cell Cycle/physiology , Culture Media , DNA Replication , Longevity , Metabolome , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development
5.
Sci Rep ; 9(1): 4836, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894605

ABSTRACT

Single-cell transcriptomic methods classify new and existing cell types very effectively, but alternative approaches are needed to quantify the individual regulatory states of cells in their native tissue context. We combined the tissue preservation and single-cell resolution of laser capture with an improved preamplification procedure enabling RNA sequencing of 10 microdissected cells. This in situ 10-cell RNA sequencing (10cRNA-seq) can exploit fluorescent reporters of cell type in genetically engineered mice and is compatible with freshly cryoembedded clinical biopsies from patients. Through recombinant RNA spike-ins, we estimate dropout-free technical reliability as low as ~250 copies and a 50% detection sensitivity of ~45 copies per 10-cell reaction. By using small pools of microdissected cells, 10cRNA-seq improves technical per-cell reliability and sensitivity beyond existing approaches for single-cell RNA sequencing (scRNA-seq). Detection of low-abundance transcripts by 10cRNA-seq is comparable to random 10-cell groups of scRNA-seq data, suggesting no loss of gene recovery when cells are isolated in situ. Combined with existing approaches to deconvolve small pools of cells, 10cRNA-seq offers a reliable, unbiased, and sensitive way to measure cell-state heterogeneity in tissues and tumors.


Subject(s)
Neoplasms/genetics , Sequence Analysis, RNA/methods , Animals , Biopsy/methods , Cell Line, Tumor , Gene Expression Profiling/methods , Humans , Mice , RNA/genetics , RNA, Small Cytoplasmic/genetics , Reproducibility of Results , Single-Cell Analysis/methods , Software , Transcriptome/genetics
6.
J Mol Cell Cardiol ; 121: 180-189, 2018 08.
Article in English | MEDLINE | ID: mdl-30030017

ABSTRACT

Cardiac hypertrophy is a common response of cardiac myocytes to stress and a predictor of heart failure. While in vitro cell culture studies have identified numerous molecular mechanisms driving hypertrophy, it is unclear to what extent these mechanisms can be integrated into a consistent framework predictive of in vivo phenotypes. To address this question, we investigate the degree to which an in vitro-based, manually curated computational model of the hypertrophy signaling network is able to predict in vivo hypertrophy of 52 cardiac-specific transgenic mice. After minor revisions motivated by in vivo literature, the model concordantly predicts the qualitative responses of 78% of output species and 69% of signaling intermediates within the network model. Analysis of four double-transgenic mouse models reveals that the computational model robustly predicts hypertrophic responses in mice subjected to multiple, simultaneous perturbations. Thus the model provides a framework with which to mechanistically integrate data from multiple laboratories and experimental systems to predict molecular regulation of cardiac hypertrophy.


Subject(s)
Cardiomegaly/genetics , Heart Failure/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Angiotensin II/genetics , Angiotensin II/metabolism , Animals , Cardiomegaly/physiopathology , Computational Biology , Disease Models, Animal , Heart Failure/physiopathology , Humans , Mice , Mice, Transgenic , Myocardium/pathology , Myocytes, Cardiac/pathology , Signal Transduction/genetics
7.
Sci Rep ; 8(1): 1258, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352247

ABSTRACT

Direct reprogramming of fibroblasts into cardiomyocytes is a promising approach for cardiac regeneration but still faces challenges in efficiently generating mature cardiomyocytes. Systematic optimization of reprogramming protocols requires scalable, objective methods to assess cellular phenotype beyond what is captured by transcriptional signatures alone. To address this question, we automatically segmented reprogrammed cardiomyocytes from immunofluorescence images and analyzed cell morphology. We also introduce a method to quantify sarcomere structure using Haralick texture features, called SarcOmere Texture Analysis (SOTA). We show that induced cardiac-like myocytes (iCLMs) are highly variable in expression of cardiomyocyte markers, producing subtypes that are not typically seen in vivo. Compared to neonatal mouse cardiomyocytes, iCLMs have more variable cell size and shape, have less organized sarcomere structure, and demonstrate reduced sarcomere length. Taken together, these results indicate that traditional methods of assessing cardiomyocyte reprogramming by quantifying induction of cardiomyocyte marker proteins may not be sufficient to predict functionality. The automated image analysis methods described in this study may enable more systematic approaches for improving reprogramming techniques above and beyond existing algorithms that rely heavily on transcriptome profiling.


Subject(s)
Cellular Reprogramming , Fibroblasts/cytology , Image Processing, Computer-Assisted/methods , Myocytes, Cardiac/cytology , Single-Cell Analysis/methods , Algorithms , Animals , Cells, Cultured , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...