Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biointerphases ; 19(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38975887

ABSTRACT

A promising research direction in the field of biological engineering is the design and functional programming of three-dimensional (3D) biointerfaces designed to support living cell functionality and growth in vitro, offering a route to precisely regulate cellular behaviors and phenotypes for addressing therapeutic challenges. While traditional two-dimensional (2D) biointerfaces have provided valuable insights, incorporating specific signaling cues into a 3D biointeractive microenvironment at the right locations and time is now recognized as crucial for accurately programming cellular decision-making and communication processes. This approach aims to engineer cell-centric microenvironments with the potential to recapitulate complex biological functions into a finite set of growing cellular organizations. Additionally, they provide insights into the hierarchical logic governing the relationship between molecular components and higher-order multicellular functionality. The functional live cell-based microenvironment engineered through such innovative biointerfaces has the potential to be used as an in vitro model system for expanding our understanding of cellular behaviors or as a therapeutic habitat where cellular functions can be reprogrammed.


Subject(s)
Signal Transduction , Animals , Humans , Cellular Microenvironment , Tissue Engineering/methods
2.
ACS Appl Mater Interfaces ; 16(27): 35361-35371, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38940634

ABSTRACT

Nanomaterials shaped as rings are interesting nanostructures with control of the materials properties at the nanoscale. Nanoring plasmonic resonators provide tunable optical resonances in the near-infrared with application in sensing. Fabrication of nanorings can be carried out via top-down approaches based on electron beam lithography with high control of the ring size parameters but at high cost. Alternatively, fabrication via self-assembly approaches has a higher speed/lower cost but at the cost of control of ring parameters. Current colloidal lithography approaches can provide nanoring fabrication over large areas but only of specific materials and a select set of rings (large ring diameters or small rings with ultrathin walls). We extend Hole-mask Colloidal Lithography to use ring shaped holes, allow the deposition of arbitrary materials, and allow the independent tuning of ring-wall thickness over a large range of values. We present a generic approach for the fabrication of nanorings formed from a range of materials including low cost (e.g., Cu, Al) and nonplasmonic (e.g., W) materials and with control of ring wall thickness and diameter allowing tuning of ring parameters and materials for applications in nanooptics and beyond.

3.
ACS Appl Mater Interfaces ; 16(17): 21534-21545, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634566

ABSTRACT

Nanoscale biomolecular placement is crucial for advancing cellular signaling, sensor technology, and molecular interaction studies. Despite this, current methods fall short in enabling large-area nanopatterning of multiple biomolecules while minimizing nonspecific interactions. Using bioorthogonal tags at a submicron scale, we introduce a novel hole-mask colloidal lithography method for arranging up to three distinct proteins, DNA, or peptides on large, fully passivated surfaces. The surfaces are compatible with single-molecule fluorescence microscopy and microplate formats, facilitating versatile applications in cellular and single-molecule assays. We utilize fully passivated and transparent substrates devoid of metals and nanotopographical features to ensure accurate patterning and minimize nonspecific interactions. Surface patterning is achieved using bioorthogonal TCO-tetrazine (inverse electron-demand Diels-Alder, IEDDA) ligation, DBCO-azide (strain-promoted azide-alkyne cycloaddition, SPAAC) click chemistry, and biotin-avidin interactions. These are arranged on surfaces passivated with dense poly(ethylene glycol) PEG brushes crafted through the selective and stepwise removal of sacrificial metallic and polymeric layers, enabling the directed attachment of biospecific tags with nanometric precision. In a proof-of-concept experiment, DNA tension gauge tether (TGT) force sensors, conjugated to cRGD (arginylglycylaspartic acid) in nanoclusters, measured fibroblast integrin tension. This novel application enables the quantification of forces in the piconewton range, which is restricted within the nanopatterned clusters. A second demonstration of the platform to study integrin and epidermal growth factor (EGF) proximal signaling reveals clear mechanotransduction and changes in the cellular morphology. The findings illustrate the platform's potential as a powerful tool for probing complex biochemical pathways involving several molecules arranged with nanometer precision and cellular interactions at the nanoscale.


Subject(s)
Click Chemistry , DNA , DNA/chemistry , Biosensing Techniques/methods , Surface Properties , Animals , Mice , Azides/chemistry , Biotin/chemistry , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Ligands , Avidin/chemistry
4.
Nat Commun ; 15(1): 1224, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336934

ABSTRACT

The peripheral immune system is important in neurodegenerative diseases, both in protecting and inflaming the brain, but the underlying mechanisms remain elusive. Alzheimer's Disease is commonly preceded by a prodromal period. Here, we report the presence of large Aß aggregates in plasma from patients with mild cognitive impairment (n = 38). The aggregates are associated with low level Alzheimer's Disease-like brain pathology as observed by 11C-PiB PET and 18F-FTP PET and lowered CD18-rich monocytes. We characterize complement receptor 4 as a strong binder of amyloids and show Aß aggregates are preferentially phagocytosed and stimulate lysosomal activity through this receptor in stem cell-derived microglia. KIM127 integrin activation in monocytes promotes size selective phagocytosis of Aß. Hydrodynamic calculations suggest Aß aggregates associate with vessel walls of the cortical capillaries. In turn, we hypothesize aggregates may provide an adhesion substrate for recruiting CD18-rich monocytes into the cortex. Our results support a role for complement receptor 4 in regulating amyloid homeostasis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Integrin alphaXbeta2 , Monocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL